酵母双杂交系统由Fields和Song等首先在研究真核基因转录调控中建立 。典型的真核生物转录因子, 如GAL4、GCN4、等都含有二个不同的结构域:DNA结合结构域和转录激活结构域。前者可识别DNA上的特异序列, 并使转录激活结构域定位于所调节的基因的上游, 转录激活结构域可同转录复合体的其他成分作用, 启动它所调节的基因的转录。
GST亲和层析和GST Pull-down方法
此方法的基本原理是:利用重组技术将探针蛋
白与GST(Glutathione S transferase)融合,融合蛋
白通过GST与固相化在载体上的GTH(Glutathione)
亲和结合。因此,当与融合蛋白有相互作用的蛋白
通过层析柱时或与此固相复合物混合时就可被吸
附而分离。在病毒受体研究中,融合蛋白通常设计
为病毒吸附蛋白(VAP)。这方面成功的例子有
HBV[28]。具体做法如下:将GST-融合探针蛋白
(VAP)和GTH-Sepharose制成亲和层析柱,然后待
分析的蛋白质混合液流经亲和层析柱,梯度洗脱,
分离、收集各蛋白组分,这称为GST亲和柱层析
(GST affinity column chromatography)。如果一开
始待检蛋白就和GST- 融合探针蛋白与
GTH-Sepharose一起共同孵育,经离心收集洗脱复
合物和洗涤后,再加入过量GTH获得相互作用蛋白
的复合物,那么这种方法则称为GST pull down。
GST亲和层析及相应的GST Pull-down方法的
优点是敏感,对混合物中的所有蛋白均“一视同仁”,
也可用于受体功能的鉴定。缺点是GST有可能影响
融合蛋白的空间结构,另外,蛋白质浓度对实验也
有一定影响。
3.6 酵母双杂交技术
许多真核生物的转录激活因子通常具有两个
可独立存在的结构域,即DNA结合域(BD)与转
录激活域(AD)。这两个结构域各具功能,互不影
响。但一个完整的激活特定基因表达的激活因子必
须同时含有这两个结构域。不同来源的激活因子的
BD区与AD结合后则可特异地激活被BD结合的基
因表达。基于这个原理,人们将两个待测蛋白分别
与这两个结构域建成融合蛋白,并共表达于同一个
酵母细胞内。如果两个待测蛋白间能发生相互作用
就会使AD与BD形成完整的转录激活因子并激活相
应的报告基因表达。通过对报告基因表型的测定可以很容易地知道待测蛋白分子间是否发生了相互作用.
酵母双杂交系统由三个部分组成:①与BD融合
的蛋白表达载体,被表达的蛋白称诱饵蛋白(bait);
②AD融合的蛋白表达载体,其表达的蛋白称靶蛋
白(prey);③带有一个或多个报告基因的宿主菌株。
常用的报告基因有HIS3、URA3、LacZ和ADE2等。
而菌株则具有相应的营养缺陷型。
双杂交质粒上分别带有不同的抗性基因和营
养标记基因,有利于杂交质粒的鉴定与分离。根据
目前通用系统中BD来源主要分为GAL4系统和
LexA系统。后者因BD来源于原核生物,在真核生
物内缺少同源性,因此可以减少假阳性的出现。
近年来,开始出现了应用酵母双杂交技术进行
病毒受体研究的成功报告,如麻疹病毒的绒猴细胞
受体[30]。李凌云等构建了表达“猎物”(prey)蛋白
的质粒和表达病毒VAP“诱饵”(bait)蛋白的质粒,
然后共转染同一酵母细胞,利用已建立的易感细胞
cDNA文库,筛到了阳性克隆。
酵母双杂交技术的优点是灵敏度高,特异性较
好,缺点是容易出现假阳性和假阴性,而且对蛋白
质在细胞中的定位有要求。
为了克服上述缺点,人们进一步优化出所谓“双
筛选系统”,即蛋白质相互作用必须同时激活两个
以上报道基因,具有两种以上的相应表型才算是真
的阳性结果。另外,人们也改造了酵母双杂交系统
所用的载体系统,将在细胞浆内发生的蛋白质相互
作用转移到细胞膜上进行,以此来更容易地筛选膜
蛋白受体,如Ras recruitment system(RRS)。
酵母双杂交系统(Yeast two-hybrid system)的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子 GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence,UAS)的下游启动子,使启动子下游基因得到转录。
双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成,其中有DNA结合结构域(DNA binding domain,简称为BD)和转录激活结构域(activation domain,简称为AD),它们是转录激活因子发挥功能所必需的。单独的BD虽然能和启动子结合,但是不能激活转录。而不同转录激活因子的BD和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的BD与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。
在酵母双杂交系统中,“诱饵”蛋白X克隆至DNA-BD载体中,表达DNA-BD/X融合蛋白;待测试蛋白Y克隆至AD载体中,表达AD/Y融合蛋白。一旦X与Y蛋白间有相互作用,则DNA-BD和AD也随之被牵拉靠近,恢复行使功能,激活报告重组体中LacZ和HIS3基因的表达。
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有
邮箱:daokedao3713@qq.com