GSM系统主要由移动台(MS)、移动网子系统(NSS)、基站子系统(BSS)和操作支持子系统(OSS)四部分组成。
BSS包括基站(BTS)和基站控制器(BSC),NSS包括移动业务交换中心(MSC)、拜访位置寄存器(VLR)、归属位置寄存器(HLR)、设备识别寄存器(EIR)、鉴权中心(AUC)),四个分系统之间都有定义明确且详细的标准化接口方案,保证任何厂商提供的GSM 系统设备可以互连。
图1所示是手机总体框图,手机是由射频、基带、软件和人机接口等单元组成的。
下面按射频、基带、人机接口、软件、SIM卡五部分进行叙述。
4.2.1 射频单元
射频单元的组成如图1所示。
发射机将基带单元送来的已调基带信号与频率合成器产生的本振信号混频,变换为射频发射频率,经功率放大器将已调射频信号放大到所需功率,再经双工器馈送到手机天线上发射出去。
手机接收机将天线上所收到的来自基站发射机的微弱已调射频信号,经双工器送到低噪声放大器放大到所需电平,与频率合成器产生的本振信号混频,变换为基带信号送往基带单元。
频率合成器以高精度晶体振荡器作为基准,通过合成技术能产生一系列具有一定频率间隔的高精度频率源。合成方式有直接合成和锁相环合成两种。
双工器是允许利用同一天线同时发射和接收的一种装置,实质上它是一组滤波器,以避免发射的强信号干扰接收的弱信号,早期的双工器是陶瓷双工滤波器,体积较大。为了减少手机的尺寸,目前,通常的做法是采用电子开关加上必要的TX低通滤波器和RX—SAW滤波器,并集成封装在一个模块中,实现双工开关的功能。
以下介绍的射频设计是一套适用于GSM900/ DCS1 800双频手机射频设计方案,它与以往的手机解决方案有所不同,使用了零中频技术,接收时不再需要中频滤波器,对减小手机体积、降低成本都是非常有利的。下面简述射频部分的工作原理。
a.接收机
接收机原理如图2所示。
在该接收机中,主要功能由零中频收发器(U4)完成,它包括一个GSM低噪声放大器(LNA)、两个正交混频器(GSM频段和DCS频段)、一个本振信号发生器和两个有源滤波器。
接收机工作时,接收信号通过天线进入前端模块(前端模块包括收发开关、低通滤波器和RX滤波器),之后,信号分别送入DCS通路或GSM通路。对于GSM通路只需把从前端模块送出GSM_RF和GSM_RFB送入U4下变频处理即可;而对于DCS频段必须外接LNA(U2)和BALUN(U3),将经过前端滤波之后的信号转换为DCS_RF和DCS_RFB双端平衡信号,然后送入U4进行混频处理。系统频率合成器产生的本振信号在U4内分频后,与接收信号一次混频直接得到零中频I、Q信号,此I、Q信号经过低通滤波器滤除阻塞干扰和邻道干扰后,被送入基带电路进行解调处理。
外部LNA(U2)电压增益、U4内LNA、混频器和内部的基带放大器增益,都可以通过串行接口实现可编程增益控制(AGC)。
GSM手机的AGC是根据基带检测到的接收信号强度来调节接收机的增益,使接收机输出的基带信号幅度峰峰值保持在要求的数值上,以满足接收机动态范围的要求。AGC控制信号由基带单元送出。
b.发射机
发射机主要由调制环路、功放(PA)和前端模块组成。调制环路集成在零中频收发器U4中,它包括正交调制器、分频器、高速相位—频率检测器和下变频混频器,与外接的发射压控振荡器(TXVCO)共同完成传递调制。
发射机原理如图3所示。发射通路的工作过程:从基带电路送来的I、Q信号进入U4,U4内部产生一个正交调制的IF信号,再利用传递环技术将信号通过TXVCO变到最终的TX频率上(GSM为890~915MHz,DCS为1710~1785MHz),之后TXVCO输出的射频信号送入功率放大器(U7)进行放大,再送入前端模块(U1)滤波后经天线发射出去。由于TXVCO输出频谱好,所以只需要在前端模块集成一个低通滤波器滤除发射谐波。
简单地说,传递环技术就是一个在反馈环路中带有一个下变频器的锁相环,它起到跟踪带通滤波器的作用,不但发射噪声小,同时还可以消除寄生调制。
U7的功率控制是通过一片IC(U6)实现闭环控制。一方面要让输出功率在每一个工作时隙中保持稳定,满足GSM标准的要求,另一方面用来自基带的功率等级控制信号TX_RAMP控制手机输出功率的大小,在不需要最大发射功率就能达到较好传输质量的情况下,降低手机的发射功率,减少对其他通信的干扰,同时可以延长手机电池的使用时间。
功率控制的过程是:手机通过上行链路报告所测量的接收信号强度和信号质量,GSM系统通过下行链路下达手机功率控制指令,确定增加或减少手机的发射功率,手机软件根据系统指令选择后,送出TX_RAMP信号去调节功放所需的输出功率。
自动功率控制(APC)原理框图如图4所示。
APC的实现过程如下:U7输出经过定向耦合器耦合一部分信号,把这部分信号的电压V1送入比较器(U6)一个输入端,与来自基带的控制信号TX_RAMP的电压进行比较,产生的电压差被送入U7的电压控制脚,自动控制输出功率。
c.频率合成器
该方案频率合成器主要包括13MHz参考晶振(VCTCXO)、小数分频锁相环(PLL)和射频压控振荡器(RFVCO),具体的工作过程见图5。
自动频率控制(AFC)信号控制VCTCXO的频率,为PLL提供参考频率。RFVCO产生的频率送入PLL,经过分频处理后与13MHz频率比较,比较所产生的误差电压CP再送入RFVCO 中,进一步控制RFVCO的频率,直到其频率值达到要求。
RFVCO是宽频段、低相位噪声的振荡器,它在不同工作方式下的频率见表1。
表1 RFVCO不同工作方式下的频率发射频率(MHz)接收频率(MHz)VCO频率(MHz)GSM方式890~915915~9601 320~1 440DCS方式1 710~1 7851 805~1 8801 282.5~1 440RFVCO的覆盖频率1 282~1 440射频VCO覆盖GSM/DCS双频段,实现并不困难,但是由于手机是低电压工作的,又要求PLL的锁定时间很快(对GPRS<250μs),相位噪声低,所以在环路中采用充电泵来改善压控振荡器的控制速度,同时U1是小数分频PLL,环路比相频率可以选高一些,使锁定时间加快。U1内部包括了Σ—Δ调制器、加法器、高频前置分频器、低噪声的相位检测器和充电泵。
通常情况下,VCTCXO技术指标为:标称中心频率f0=13MHz;常温条件下的频率误差为±5×f0×10;温度稳定度为±2.5×f0×10。
从参考频率振荡器的技术参数可以看出:若不采用AFC,显然不能满足GSM11.10技术规范中对手机频率误差0.1×f0×10的要求,因此,必须采用AFC。
为了完成AFC,首先要有一个以基站频率为基准的频率校正信号,它是由BS在下行的慢速相关控制信道(SACCH)上发出的。手机接收到由BS发来的频率校正数据后,经DAC变换再滤波,产生一个AFC控制信号,加到手机参考频率源U11的AFC脚,使手机的参考频率作出调整,从而可以微调手机发射的工作频率。手机的发射频率经由BS接收后,再由BS判断,若误差超过标准,由BS经SACCH信道重新作出调整,直到手机的发射频率误差在正常和极限条件下均可满足要求为止。
d.接口
射频电路与基带电路之间有许多接口,包括模拟的和数字的。主要的接口如下。
I、Q接口:接收通路产生的I、Q信号送入基带进行解调,并最终变成语音信号,而发送通路所需的I、Q信号则来自基带,经过射频电路的调制并加载波后发射出去。
SEN、SDATA、SCLK接口:这3个接口是基带电路和射频电路之间的数字控制接口,能实现对射频电路很多功能的控制,包括对接收机增益及频率合成器的控制。
AFC接口:来自基带电路,实现对VCTCXO的频率控制。
RF_CLK接口:与基带电路相接,为基带电路提供精确的参考时钟。
TX_RAMP接口:来自基带电路,与来自耦合器的信号进行比较,以实现对功放的功率控制。
4.2.2基带单元
在无线通信系统中,基带信号构成发射机的调制信号。GSM系统中所传输的是二进制数字信号,发射时有信源编码、信道编码、交织、突发脉冲格式化、加密和调制,通过这些处理将模拟信源信号变换为数字基带信号;接收时有解调、解密、突发脉冲格式化、去交织、信道解码和信源解码,经过与发射相反的信号处理,将数字基带信号变换为模拟信源信号。这些处理过程如图6所示。
手机的基带部分采用专用芯片设计,专用芯片是以微处理器、微控制器和基带接口芯片为核心的大规模集成电路。数字信号处理器实现手机语音编解码、自适应均衡、加密和解密算法;微控制器实现对手机操作和通信协议运行的控制;基带接口芯片实现基带信号调制/解调和A/D、D/A转换。基带还提供语音、数据接口和人机对话等所必要的配套能力,作为个人通信标志的SIM卡,也配置在基带。全部系统软件和应用软件存储在基带的快闪存储器(Flash ROM)内。
下面介绍一种手机基带设计方案,该方案可以支持GPRS。
本方案基带单元的工作是围绕两个主要芯片进行的:GSM处理器U1和基带接口U2。
图7为基带部分的原理框图。框图中有两个晶振,其中13MHz晶振为手机的参考频率,要求频率精度比较高。而32kHz的晶振主要是为各部分的省电模式提供基准频率。
a.微处理器U1功能介绍
U1主要由16bit 数字信号处理器(DSP)、32bit微处理器(MCU)和外围接口三部分组成,功能框图如图8所示。
Ⅰ.数字信号处理器(DSP)
DSP专门实现语音编解码、信道均衡和信道编解码以及信号强度测量等功能。实现这些功能的代码通常存储于外部快闪存储器,并根据需要动态下载到DSP的程序RAM和缓存。
DSP集成了两个协处理器以及缓存/程序控制系统。运算协处理器的主要工作任务是进行加密/解密的运算。维特比协处理器的主要任务是完成信道均衡和信道编解码。缓存/程序控制作为DSP与内部、外部的存储单元之间通信的中介和控制系统,提供足够的地址空间,完成各部分功能的时序控制。
DSP可以通过缓存系统对存储在快闪或内部RAM中的代码进行访问,缓存系统可以自动地下载需要的代码。
Ⅱ.FMCU
在GSM系统中,MCU子系统的主要功能是执行GSM协议层软件、人机界面软件和其他用户应用软件。它由ARM7中央处理器、内部ROM、时钟发生器和存取控制模块构成。与ARM相连的总线管理模块控制ARM直接与外围总线、系统RAM总线或外部总线中的一个进行存取。
Ⅲ.外围接口
U1外围接口包括键盘、存储器、显示驱动、SIM数据接口以及它进行各种处理所需要的通信接口。
b.音频接口芯片U2功能介绍
U2功能如图9所示。它主要由基带处理(信号调制/解调)、辅助处理和音频处理三大部分组成,每一部分与微处理器之间的通信是通过串行总线进行的,其中:基带串口处理与RF接口的I、Q信号;辅助串口处理所有与编解码有关的控制信号、ADC数据以及DAC数据;音频串口处理语音信号。
Ⅰ.基带处理部分从头至尾始终是模拟信号,它为话筒和扬声器直接提供驱动接口;提供免提和外部汽车设备接口;提供独立的输入输出信道。输入输出增益为用户提供最大灵活性的可编程特性。
发射通路将基带串口接收的上行I、Q信号送入GMSK调制器,调制后送进两个高速DAC,再送入射频发射机,基带处理的调制/解调器为双信道。
其接收通路将射频接收机送来的平衡I、Q信号首先被取样,然后送入两个Σ—Δ调制器以减少量化噪声,ADC之后的I、Q信号经过高性能数字滤波器以滤除邻道噪声和量化噪声。
Ⅱ.辅助处理部分主要包括控制寄存器、ADC’S、DAC’S。
Ⅲ.音频处理部分主要处理音频信号的变换。
c.电源管理及充电
手机电源系统通常采用电源管理模块集中控制,该方案电源管理模块提供4个LDO,这4个LDO根据电路特点和实际需要均进行了性能上的优化,每个LDO都有各自的特点。
数字LDO:数字LDO在开机后始终需要开启,因此LDO对低负载时的静态电流进行了优化。
模拟LDO:模拟LDO同样始终开启,因此对静态电流要求也很高。同时,由于需要与射频部分进行连接,所以要加强低频纹波滤除。
晶振LDO:晶振LDO要求具有良好的噪音特性。
实时钟LDO:实时钟LDO为备用电池充电,即使在关机时它都要工作。
手机充电可以采用线性充电模块,外部用一个PMOS管作为开关管。充电的前一段时间为恒流,当电池电压达到4.1V/4.2V时,变为恒压充电。该方案的充电电路集成在电源管理模块中。
d.显示接口
LCD的接口模式有并行和串行两种,本方案中LCD与MCU的接口为串行模式,在每个时钟的上升沿输入一位串行数据。在8位串行数据都进入之后,串行数据转变为8位的并行数据在驱动模块中进行下一步处理。驱动模块内置显示RAM,一个RAM位和一个LCD的点相对应,这样就可以通过改变这个RAM位的内容而改变LCD的点的状态。
e.射频与系统接口
Ⅰ.基带与射频部分的接口:
基带I/Q接口信号,如IP、IN、QP和QN;
串行数据信号,如SYNTHDATA、SYNTHEN和SYNTHCLK,是基带部分为RF提供控制信号的串行通信接口;
射频时钟及控制信号,如RF_CLK、AFC、TX_RAMP;
温度检测信号,如TEMP_SENSE。
Ⅱ.基带部分的系统接口:地(GND)、数字电源、模拟电压、通用系统接口0~6(USC 0~6)、耳机接口、充电器电源接口。
4.2.3 人机接口
人机接口是进行移动通信的人与提供移动通信服务的手机之间交往的界面,如图10所示。它包括硬件和软件:硬件有键盘、显示屏、话筒、扬声器和SIM卡等;软件有菜单与电话簿功能、公众移动网功能、用户SIM卡功能、基本人机界面功能。
4.2.4 软件
参见图11,GSM软件包括基带单元内部功能电路的运算程序和执行通信协议的第一、二、三层的运行程序。图中虚线左方是基本的GSM软件,右方是增加GPRS功能的软件部分。
4.2.5 SIM卡
SIM卡是由一块大规模集成电路芯片制成的。在GSM数字移动通信网中,每一位用户都有一张SIM卡,必须将其插入手机,用户才能进行通话。没有插入SIM卡的手机,仅可发出紧急呼叫,其他所有功能都不能使用。在GSM移动通信中采用了SIM卡技术,使无线电通信从不保密的处境中解放出来。
目前使用的SIM卡有两种:一种称为大卡,尺寸为85mm×54mm;另一种称为小卡,尺寸为25mm×15mm。不管大卡或小卡,所装的集成电路都一样。有些大卡上嵌装小卡,可将小卡拆下使用。目前通用的是小卡。随着网络增值业务的不断开通,STK卡也开始流行,它可以提供银行等多种业务,同时卡的容量也大于一般的大、小卡,STK卡可以存储100个电话号码。
SIM卡有客户与手机分离(人机分开)、通信安全可靠、成本低而结实耐用等特点。
SIM卡存储的内容包括:a. 用户识别号码,即代表用户的电话号码。b. 用户密钥和保密算法。它们既能鉴别用户身份,防止非法进入网络,又能使无线信道上传送的用户数据不会被窃取,从而杜绝了“孖机”现象。c. 个人识别码(PIN码)和SIM卡个人开锁码(PUK码)。PIN码是SIM卡的个人密码,可防止他人擅用SIM卡;当PIN码按错后,可亲自用PUK码来开锁。d. 用户使用的存储空间。用户可将一些固定短消息,电话号码本等个人信息存入SIM卡中。
GSM意思是全球移动通信系统(Global System for Mobile Communications) ,缩写为GSM,由欧洲电信标准组织ETSI制订的一个数字移动通信标准。
CDMA是码分多址是在数字技术的分支扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。
两者区别如下:
一、指代不同
1、GSM:每个信道传输带宽增加,使同频复用栽干比要求降低至9dB,故GSM系统的同频复用模式可以缩小到4/12或3/9甚至更小;加上半速率话音编码的引入和自动话务分配以减少越区切换的次数,使GSM系统的容量效率比TACS系统高3~5倍。
2、CDMA:不同用户传输信息所用的信号不是靠频率不同或时隙不同来区分,而是用各自不同的编码序列来区分,或者说,靠信号的不同波形来区分。
二、原理不同
1、GSM:主要由移动台(MS)、移动网子系统(NSS)、基站子系统(BSS)和操作维护中心(OMC)四部分组成。
2、CDMA:采用了话音激活技术和扇区化技术。因为CDMA系统的容量直接与所受的干扰有关,采用话音激活和扇区化技术可以减少干扰,可以使整个系统的容量增大。
三、特点不同
1、GSM:采用了高效调制器、信道编码、交织、均衡和语音编码技术,使系统具有高频谱效率。
2、CDMA:采用宽带传输,在信道中传输的有用信号的功率比干扰信号的功率低得多,因此信号好像隐蔽在噪声中;即功率谱密度比较低,有利于信号隐蔽。
-CDMA
-gsm
移动通信系指通信双方或至少一方是处于移动中进行信息交流的通信。20年代开始在军事及某些特殊领域使用,40年代才逐步向民用扩展;最近十年间才是移动通信真正迅猛发展的时期,而且由于其许多的优点,前景十分广阔。
移动通信经历了由模拟通信向数字化通信的发展过程。目前,比较成熟的数字移动通信制式主要有泛欧的GSM,美国的ADC和日本的JDC(现改称PDC)。其中GSM的发展最引人注目,其发展历程如下:
1982年,欧洲邮电行政大会CEPT设立了“移动通信特别小组”即GSM,以开发第二代移动通信系统为目标。
1986年,在巴黎,对欧洲各国经大量研究和实验后所提出的八个建议系统进行现场试验。
1987年,GSM成员国经现场测试和论证比较,就数字系统采用窄带时分多址TDMA规则脉冲激励长期预测(RPE-LTP)话音编码和高斯滤波最小频移键控(GMSK)调制方式达成一致意见。
1988年,十八个欧洲国家达成GSM谅解备忘录(MOU)。
1989年,GSM标准生效。
1991年,GSM系统正式在欧洲问世,网路开通运行。移动通信跨入第二代。
GSM数字蜂窝移动通信系统(简称GSM系统)是完全依据欧洲通信标准化委员会(ETSI)制定的GSM技术规范研制而成的,任何一家厂商提供的GSM数字蜂窝移动通信系统都必须符合GSM技术规范。
GSM系统作为一种开放式结构和面向未来设计的系统具有下列主要特点:
GSM系统是由几个子系统组成的,并且可与各种公用通信网(PSTN、ISDN、PDN等)互连互通。各子系统之间或各子系统与各种公用通信网之间都明确和详细定义了标准化接口规范,保证任何厂商提供的GSM系统或子系统能互连;
GSM系统能提供穿过国际边界的自动漫游功能,对于全部GSM移动用户都可进入GSM系统而与国别无关;
GSM系统除了可以开放话音业务,还可以开放各种承载业务、补充业务和与ISDN相关的业务;
GSM系统具有加密和鉴权功能,能确保用户保密和网络安全;
GSM系统具有灵活和方便的组网结构,频率重复利用率高,移动业务交换机的话务承载能力一般都很强,保证在话音和数据通信两个方面都能满足用户对大容量、高密度业务的要求;
GSM系统抗干扰能力强,覆盖区域内的通信质量高;
用户终端设备(手持机和车载机)随着大规模集成电路技术的进一步发展能向更小型、轻巧和增强功能趋势发展。
3.1.2系统的结构与功能
GSM系统的典型结构如图3-1所示。由图可见,GSM系统是由若干个子系统或功能实体组成。其中基站子系统(BSS)在移动台(MS)和网络子系统(NSS)之间提供和管理传输通路,特别是包括了MS与GSM系统的功能实体之间的无线接口管理。NSS必须管理通信业务,保证MS与相关的公用通信网或与其它MS之间建立通信,也就是说NSS不直接与MS互通,BSS也不直接与公用通信网互通。MS、BSS和NSS组成GSM系统的实体部分。操作支持系统(OSS)则提供运营部门一种手段来控制和维护这些实际运行部分。
OSS:操作支持子系统 BSS:基站子系统 NSS:网路子系统
NMC:网路管理中心 DPPS:数据后处理系统 SEMC:安全性管理中心
PCS:用户识别卡个人化中心 OMC:操作维护中心 MSC:移动业务交换中心
VLR:来访用户位置寄存器 HLR:归属用户位置寄存器 AUC:鉴权中心
EIR:移动设备识别寄存器 BSC:基站控制器 BTS:基站收发信台
PDN:公用数据网 PSTN:公用电话网 ISDN:综合业务数字网
MS:移动台图
图3-1 GSM系统结构
1. 移动台(MS)
移动台是公用GSM移动通信网中用户使用的设备,也是用户能够直接接触的整个GSM系统中的唯一设备。移动台的类型不仅包括手持台,还包括车载台和便携式台。随着GSM标准的数字式手持台进一步小型、轻巧和增加功能的发展趋势,手持台的用户将占整个用户的极大部分。
除了通过无线接口接入GSM系统的通常无线和处理功能外,移动台必须提供与使用者之间的接口。比如完成通话呼叫所需要的话筒、扬声器、显示屏和按键。或者提供与其它一些终端设备之间的接口。比如与个人计算机或传真机之间的接口,或同时提供这两种接口。因此,根据应用与服务情况,移动台可以是单独的移动终端(MT)、手持机、车载机或者是由移动终端(MT)直接与终端设备(TE)传真机相连接而构成,或者是由移动终端(MT)通过相关终端适配器(TA)与终端设备(TE)相连接而构成,这可参见图3-2,这些都归类为移动台的重要组成部分之一——移动设备。
移动台另外一个重要的组成部分是用户识别模块(SIM),它基本上是一张符合ISO标准的“智慧”卡,它 包含所有与用户有关的和某些无线接口的信息,其中也包括鉴权和加密信息。使用GSM标准的移动台都需要插入SIM卡,只有当处理异常的紧急呼叫时,可以在不用SIM卡的情况下操作移动台。SIM卡的应用使移动台并非固定地缚于一个用户,因此,GSM系统是通过SIM卡来识别移动电话用户的,这为将来发展个人通信打下了基础。
图3-2 移动台的功能结构
2. 基站子系统(BSS)
基站子系统(BSS)是GSM系统中与无线蜂窝方面关系最直接的基本组成部分。它通过无线接口直接与移动台相接,负责无线发送接收和无线资源管理。另一方面,基站子系统与网路子系统(NSS)中的移动业务交换中心(MSC)相连,实现移动用户之间或移动用户与固定网路用户之间的通信连接,传送系统信号和用户信息等。当然,要对BSS部分进行操作维护管理,还要建立BSS与操作支持子系统(OSS)之间的通信连接。
基站子系统是由基站收发信台(BTS)和基站控制器(BSC)这两部分的功能实体构成。实际上,一个基站控制器根据话务量需要可以控制数十个BTS。BTS可以直接与BSC相连接,也可以通过基站接口设备(BIE)采用远端控制的连接方式与BSC相连接。需要说明的是,基站子系统还应包括码变换器(TC)和相应的子复用设备(SM)。码变换器在更多的实际情况下是置于BSC和MSC之间,在组网的灵活性和减少传输设备配置数量方面具有许多优点。因此,一种具有本地和远端配置BTS的典型BSS组成方面如图3-3示。
(1) 基站收发信台(BTS)
基站收发信台(BTS)属于基站子系统的无线部分,由基站控制器(BSC)控制,服务于某个小区的无线收发信设备,完成BSC与无线信道之间的转换,实现BTS与移动台(MS)之间通过空中接口的无线传输及相关的控制功能。BTS主要分为基带单元、载频单元、控制单元三大部分。基带单元主要用于必要的话音和数据速率适配以及信道编码等。载频单元主要用于调制/解调与发射机/接收机之间的耦合等。控制单元则用于BTS的操作与维护。另外,在BSC与BTS不设在同一处需采用Abis接口时,传输单元是必须增加的,以实现BSC与BTS之间的远端连接方式。如果BSC与BTS并置在同一处,只需采用BS接口时,传输单元是不需要的。
图3-3 一种典型的BSS组成方式
(2) 基站控制器(BSC)
基站控制器(BSC)是基站子系统(BSS)的控制部分,起着BSS的变换设备的作用,即各种接口的管理,承担无线资源和无线参数的管理。
BSC主要由下列部分构成:
朝向与MSC相接的A接口或与码变换器相接的Ater 接口的数字中继控制部分;
朝向与BTS相接的Abis 接口或BS接口的BTS控制部分;
公共处理部分,包括与操作维护中心相接的接口控制;
交换部分。
3. 网路子系统(NSS)
网路子系统(NSS)主要包含有GSM系统的交换功能和用于用户数据与移动性管理、安全性管理所需的数据库功能,它对GSM移动用户之间通信和GSM移动用户与其它通信网用户之间通信起着管理作用。NSS由一系列功能实体构成,整个GSM系统内部,即NSS的各功能实体之间和NSS与BSS之间都通过符合CCITT信令系统No.7协议和GSM规范的7号信令网路互相通信。
(1) 移动业务交换中心(MSC)
移动业务交换中心(MSC)是网路的核心,它提供交换功能及面向系统其它功能实体:基站子系统BSS、归属用户位置寄存器HLR、鉴权中心AUC、移动设备识别寄存器EIR、操作维护中心OMC和面向固定网(公用电话网PSTN、综合业务数字网ISDN、分组交换公用数据网PSPDN、电路交换公用数据网CSPDN)的接口功能,把移动用户与移动用户、移动用户与固定网用户互相连接起来。
移动业务交换中心MSC可从三种数据库,即归属用户位置寄存器(HLR)、访问用户位置寄存器(VLR)和鉴权中心(AUC)获取处理用户位置登记和呼叫请求所需的全部数据。反之,MSC也根据其最新获取的信息请求更新数据库的部分数据。
MSC可为移动用户提供一系列业务:
电信业务。例如:电话、紧急呼叫、传真和短消息服务等;
承载业务。例如:3.1KHz电话,同步数据0.3kbit/s~2.4kbit/s 及分组组合和分解(PAD)等;
补充业务。例如:呼叫前转、呼叫限制、呼叫等待、会议电话和计费通知等。
当然,作为网路的核心,MSC还支持位置登记、越区切换和自动漫游等移动特征性能和其它网路功能。
对于容量比较大的移动通信网,一个网路子系统NSS可包括若干个MSC、VLR和HLR,为了建立固定网用户与GSM移动用户之间的呼叫,无需知道移动用户所处的位置。此呼叫首先被接入到入口移动业务交换中心,称为GMSC,入口交换机负责获取位置信息,且把呼叫转接到可向该移动用户提供即时服务的MSC,称为被访MSC(VMSC)。因此,GMSC具有与固定网和其它NSS实体互通的接口。目前,GMSC功能就是在MSC中实现的。根据网路的需要,GMSC功能也可以在固定网交换机中综合实现。
(2) 访问用户位置寄存器(VLR)
访问用户位置寄存器(VLR)是服务于其控制区域内移动用户的,存储着进入其控制区域内已登记的移动用户相关信息,为已登记的移动用户提供建立呼叫接续的必要条件。VLR从该移动用户的归属用户位置寄存(HLR)处获取并存储必要的数据。一旦移动用户离开该VLR的控制区域,则重新在另一个VLR登记,原VLR将取消临时记录的该移动用户数据。因此,VLR可看作为一个动态用户数据库。
VLR功能总是在每个MSC中综合实现的。
(3) 归属用户位置寄存器(HLR)
归属用户位置寄存器(HLR)是GSM系统的中央数据库,存储着该HLR控制的所有存在的移动用户的相关数据。一个HLR能够控制若干个移动交换区域以及整个移动通信网,所有移动用户重要的静态数据都存储在HLR中,这包括移动用户识别号码、访问能力、用户类别和补充业务等数据。HLR还存储且为MSC提供关于移动用户实际漫游所在的MSC区域相关动态信息数据。这样,任何入局呼叫可以即刻按选择 路径送到被叫的用户。
(4) 鉴权中心(AUC)
GSM系统采取了特别的安全措施,例如用户鉴权、对无线接口上的话音、数据和信号信息进行保密等。因此,鉴权中心(AUC)存储着鉴权信息和加密密钥,用来防止无权用户接入系统和保证通过无线接口的移动用户通信的安全。
AUC属于HLR的一个功能单元部分,专用于GSM系统的安全性管理。
(5) 移动设备识别寄存器(EIR)
移动设备识别寄存器(EIR)存储着移动设备的国际移动设备识别码(IMEI),通过检查白色清单、黑色清单或灰色清单这三种表格,在表格中分别列出了准许使用的、出现故障需监视的、失窃不准使用的移动设备的IMEI识别码,使得运营部门对于不管是失窃还是由于技术故障或误操作而危及网路正常运行的MS设备,都能采取及时的防范措施,以确保网路内所使用的移动设备的唯一性和安全性。
4. 操作支持子系统(OSS)
操作支持子系统(OSS)需完成许多任务,包括移动用户管理、移动设备管理以及网路操作和维护。
移动用户管理可包括用户数据管理和呼叫计费。用户数据管理一般由归属用户位置寄存器(HLR)来完成这方面的任务,HLR是NSS功能实体之一。用户识别卡SIM的管理也可认为是用户数据管理的一部分,但是,作为相对独立的用户识别卡SIM的管理,还必须根据运营部门对SIM的管理要求和模式采用专门的SIM个人化设备来完成。呼叫计费可以由移动用户所访问的各个移动业务交换中心MSC和GMSC分别处理,也可以采用通过HLR或独立的计费设备来集中处理计费数据的方式。
移动设备管理是由移动设备识别寄存器(EIR)来完成的,EIR与NSS的功能实体之间是通过SS7信令网路的接口互连,为此,EIR也归入NSS的组成部分之一。
网路操作与维护是完成对GSM系统的BSS和NSS进行操作与维护管理任务的,完成网路操作与维护管理的设施称为操作与维护中心(OMC)。从电信管理网路(TMN)的发展角度考虑,OMC还应具备与高层次的TMN进行通信的接口功能,以保证GSM网路能与其它电信网路一起纳入先进、统一的电信管理网路中进行集中操作与维护管理。直接面向GSM系统BSS和NSS各个功能实体的操作与维护中心(OMC)归入NSS部分。
可以认为,操作支持子系统(OSS)已不包括与GSM系统的NSS和BSS部分密切相关的功能实体,而成为一个相对独立的管理和服务中心。主要包括网路管理中心(NMC)、安全性管理中心(SEMC)、用于用户识别卡管理的个人化中心(PCS)、用于集中计费管理的数据后处理系统(DPPS)等功能实体。
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有