Hive创建内部表时,会将数据移动到数据仓库指向的路径。创建外部表时,仅记录数据所在的路径,不对数据的位置做任何改变,在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。需要注意的是传统数据库对表数据验证是写时模式,而Hive在load时是不检查数据是否符合schema的,Hive遵循的是读时模式,只有在读的时候Hive才检查解析具体的数据字段。
假定有hive中有两个表empl_inn(管理表)和empl_ext(外部表),他们都有分区(logdate string);
1.对于外部表 empl_ext
alter table empl_ext add partition (logdate=‘2015-02-26’) location ‘hdfs://nameservice1/vod_pb/’;执行添加分区时 vod_pb/文件夹下的数据不会被移动。并且没有分区目录logdate=2015-02-26
alter table empl_ext drop partition (logdate=‘2015-02-26’); 执行删除分区目录时vod_pb/下的数据不会被删除
load data inpath 'hdfs://nameservice1/vod_pb/' overwrite into table empl_ext partition(logdate='2015-02-26');
执行加载数据添加分区时 vod_pb/ 文件夹下的数据会被移动,并创建分区目录logdate=2015-02-26,数据移动到此目录下
alter table empl_ext drop partition (logdate=‘2015-02-26’); 执行删除分区目录时,已经创建logdate=2015-02-26
分区目录不会被删除,其文件夹下的数据也不会被删除;、
2.对于内部表 empl_inn
alter table empl_inn add partition (logdate=‘2015-02-26’) location ‘hdfs://nameservice1/vod_pb/’;执行添加分区时 vod_pb/文件夹下的数据不会被移动。并且没有分区目录logdate=2015-02-26
alter table empl_inn drop partition (logdate=‘2015-02-26’); 执行删除分区时vod_pb/下的数据会被删除并且连同vod_pb/文件夹也会被删除
Hive是大数据领域常用的组件之一,主要用于大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的一个点,因此掌握一些Hive调优是必不可少的一项技能。影响Hive效率的主要因素有数据倾斜、数据冗余、job的IO以及不同底层引擎配置情况和Hive本身参数和HiveSQL的执行等。本文主要从建表配置参数方面对Hive优化进行讲解。
1. 创建一个普通表
table test_user1(id int, name string,code string,code_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
2. 查看这张表的信息
DESCRIBE FORMATTED test_user1;
我们从该表的描述信息介绍建表时的一些可优化点。
2.1 表的文件数
numFiles表示表中含有的文件数,当文件数过多时可能意味着该表的小文件过多,这时候我们可以针对小文件的问题进行一些优化,HDFS本身提供了解决方案:
(1)Hadoop Archive/HAR:将小文件打包成大文件。
(2)SEQUENCEFILE格式:将大量小文件压缩成一个SEQUENCEFILE文件。
(3)CombineFileInputFormat:在map和reduce处理之前组合小文件。
(4)HDFS Federation:HDFS联盟,使用多个namenode节点管理文件。
除此之外,我们还可以通过设置hive的参数来合并小文件。
(1)输入阶段合并
需要更改Hive的输入文件格式,即参数hive.input.format,默认值是org.apache.hadoop.hive.ql.io.HiveInputFormat,我们改成org.apache.hadoop.hive.ql.io.CombineHiveInputFormat。这样比起上面对mapper数的调整,会多出两个参数,分别是mapred.min.split.size.per.node和mapred.min.split.size.per.rack,含义是单节点和单机架上的最小split大小。如果发现有split大小小于这两个值(默认都是100MB),则会进行合并。具体逻辑可以参看Hive源码中的对应类。
(2)输出阶段合并
直接将hive.merge.mapfiles和hive.merge.mapredfiles都设为true即可,前者表示将map-only任务的输出合并,后者表示将map-reduce任务的输出合并,Hive会额外启动一个mr作业将输出的小文件合并成大文件。另外,hive.merge.size.per.task可以指定每个task输出后合并文件大小的期望值,hive.merge.size.smallfiles.avgsize可以指定所有输出文件大小的均值阈值,默认值都是1GB。如果平均大小不足的话,就会另外启动一个任务来进行合并。
2.2 表的存储格式
通过InputFormat和OutputFormat可以看出表的存储格式是TEXT类型,Hive支持TEXTFILE, SEQUENCEFILE, AVRO, RCFILE, ORC,以及PARQUET文件格式,可以通过两种方式指定表的文件格式:
(1)CREATE TABLE ... STORE AS <file_format>:在建表时指定文件格式,默认是TEXTFILE
(2)ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT <file_format>:修改具体表的文件格式
如果要改变创建表的默认文件格式,可以使用set
hive.default.fileformat=<file_format>进行配置,适用于所有表。同时也可以使用set
hive.default.fileformat.managed = <file_format>进行配置,仅适用于内部表或外部表。
扩展:不同存储方式的情况
TEXT,
SEQUENCE和
AVRO文件是面向行的文件存储格式,不是最佳的文件格式,因为即便只查询一列数据,使用这些存储格式的表也需要读取完整的一行数据。另一方面,面向列的存储格式(RCFILE,
ORC, PARQUET)可以很好地解决上面的问题。关于每种文件格式的说明,如下:
(1)TEXTFILE
创建表时的默认文件格式,数据被存储成文本格式。文本文件可以被分割和并行处理,也可以使用压缩,比如GZip、LZO或者Snappy。然而大部分的压缩文件不支持分割和并行处理,会造成一个作业只有一个mapper去处理数据,使用压缩的文本文件要确保文件不要过大,一般接近两个HDFS块的大小。
(2)SEQUENCEFILE
key/value对的二进制存储格式,sequence文件的优势是比文本格式更好压缩,sequence文件可以被压缩成块级别的记录,块级别的压缩是一个很好的压缩比例。如果使用块压缩,需要使用下面的配置:set
hive.exec.compress.output=true; set io.seqfile.compression.type=BLOCK
(3)AVRO
二进制格式文件,除此之外,avro也是一个序列化和反序列化的框架。avro提供了具体的数据schema。
(4)RCFILE
全称是Record Columnar File,首先将表分为几个行组,对每个行组内的数据进行按列存储,每一列的数据都是分开存储,即先水平划分,再垂直划分。
(5)ORC
全称是Optimized Row Columnar,从hive0.11版本开始支持,ORC格式是RCFILE格式的一种优化的格式,提供了更大的默认块(256M)
(6)PARQUET
另外一种列式存储的文件格式,与ORC非常类似,与ORC相比,Parquet格式支持的生态更广,比如低版本的impala不支持ORC格式。
配置同样数据同样字段的两张表,以常见的TEXT行存储和ORC列存储两种存储方式为例,对比执行速度。
TEXT存储方式
总结: 从上图中可以看出列存储在对指定列进行查询时,速度更快, 建议在建表时设置列存储的存储方式 。
2.3 表的压缩
对Hive表进行压缩是常见的优化手段,一些存储方式自带压缩选择,比如SEQUENCEFILE支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩;
ORC支持三种压缩选择:NONE,ZLIB,SNAPPY。我们以TEXT存储方式和ORC存储方式为例,查看表的压缩情况。
配置同样数据同样字段的四张表,一张TEXT存储方式,另外三张分别是默认压缩方式的ORC存储、SNAPPY压缩方式的ORC存储和NONE压缩方式的ORC存储,查看在hdfs上的存储情况:
TEXT存储方式
默认压缩ORC存储方式
SNAPPY压缩的ORC存储方式
NONE压缩的ORC存储方式
总结 :可以看到ORC存储方式将数据存放为两个block,默认压缩大小加起来134.69M,SNAPPY压缩大小加起来196.67M,NONE压缩大小加起来247.55M,TEXT存储方式的文件大小为366.58M,且默认block两种存储方式分别为256M和128M,ORC默认的压缩方式比SNAPPY压缩得到的文件还小,原因是ORZ默认的ZLIB压缩方式采用的是deflate压缩算法,比Snappy压缩算法得到的压缩比高,压缩的文件更小。 ORC不同压缩方式之间的执行速度,经过多次测试发现三种压缩方式的执行速度差不多,所以建议采用ORC默认的存储方式进行存储数据。
2.4 分桶分区
Num Buckets表示桶的数量,我们可以通过分桶和分区操作对Hive表进行优化:
对于一张较大的表,可以将它设计成分区表,如果不设置成分区表,数据是全盘扫描的,设置成分区表后,查询时只在指定的分区中进行数据扫描,提升查询效率。要注意尽量避免多级分区,一般二级分区足够使用。常见的分区字段:
(1)日期或者时间,比如year、month、day或者hour,当表中存在时间或者日期字段时,可以使用些字段。
(2)地理位置,比如国家、省份、城市等
(3)业务逻辑,比如部门、销售区域、客户等等
与分区表类似,分桶表的组织方式是将HDFS上的一张大表文件分割成多个文件。分桶是相对分区进行更细粒度的划分,分桶将整个数据内容按照分桶字段属性值得hash值进行区分,分桶可以加快数据采样,也可以提升join的性能(join的字段是分桶字段),因为分桶可以确保某个key对应的数据在一个特定的桶内(文件),所以巧妙地选择分桶字段可以大幅度提升join的性能。通常情况下,分桶字段可以选择经常用在过滤操作或者join操作的字段。
创建分桶表
create
table test_user_bucket(id int, name string,code string,code_id string )
clustered by(id) into 3 buckets ROW FORMAT DELIMITED FIELDS TERMINATED
BY ',';
查看描述信息
DESCRIBE FORMATTED test_user_bucket
多出了如下信息
查看该表的hdfs
同样的数据查看普通表和分桶表查询效率
普通表
分桶表
普通表是全表扫描,分桶表在按照分桶字段的hash值分桶后,根据join字段或者where过滤字段在特定的桶中进行扫描,效率提升。
本文首发于: 数栈研习社
数栈是云原生—站式数据中台PaaS,我们在github上有一个有趣的开源项目: FlinkX
FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,比如MySQL,HDFS等,也可以采集实时变化的数据,比如MySQL
binlog,Kafka等,是全域、异构、批流一体的数据同步引擎,大家如果有兴趣,欢迎来github社区找我们玩~
1.创建表的语句:Create [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT row_format] [STORED AS file_format] [LOCATION hdfs_path]
稍微解释下
CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常。EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数 据会被一起删除,而外部表只删除元数据,不删除数据。如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。有 分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。
创建普通的表:create table test_table (id int,name string,no int) row format delimited fields terminated by ',' stored as textfile;
//指定了字段的分隔符为逗号,所以load数据的时候,load的文本也要为逗号,否则加载后为NULL。hive只支持单个字符的分隔符,hive默认的分隔符是 01
4
创建带有partition的表:create table test_part (id int,name string,no int) partitioned by (dt string)row format delimited fields terminated by ' 'stored as textfile ;
用创建用 作分隔符的表,PT为分区字段,
加载如下:
load data local inpath '/home/zhangxin/hive/test_hive.txt' overwrite into table test_part partition (dt='2012-03-05');
//local是本地文件,注意不是你电脑上的文件,是hadoop所在的本地文件
//如果是在hdfs里的文件,则不需要local。 overwrite into是覆盖表分区,仅仅是这个分区的数据内容,如果是追加,则不需要overwrite
5
创建external表:(外部表)create external table test_external (id int,name string,no int) row format delimited fields terminated by ','location '/home/zhangxin/hive/test_hive.txt';
//用逗号分隔的表,且无分区,location后是外部表数据的存放路径
6
创建与已知表相同结构的表 Like:只复制表的结构,而不复制表的内容。create table test_like_table like test_bucket;
一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通
二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。
三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。
四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。
五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapReduce。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。
六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。
七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。
八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。
九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。
十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。
十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有
邮箱:daokedao3713@qq.com