返回
首页>资讯

一次指数平滑法计算(指数平滑法如何计算st??)

时间: 2023-03-11 09:53:24

一次指数平滑法计算

一次指数平滑法是指以最后的一个第一次指数平滑。如果为了使指数平滑值敏感地反映最新观察值的变化,应取较大阿尔法值,如果所求指数平滑值是用来代表该时间序列的长期趋势值,则应取较小阿尔法值。

一次指数平滑法的计算方法视情况而定:

如果观察值的长期趋势变动接近稳定的常数,应取居中阿尔法值,使观察值在指数平滑中具有大小接近的权数。如果观察值呈现明显的季节性变动时,则宜取较大的阿尔法值,使近期观察在指数平滑值中具有较大作用,从而使近期观察值能迅速反映在未来的预测值中。如果观察值的长期趋势变动较

指数平滑法如何计算st??


St--时间t的平滑值;
yt--时间t的实际值;
St-1--时间t-1的平滑值;
a--平滑常数,其取值范围为[0,1];
由该公式可知:
1.St是yt和 St-1的加权算数平均数,随着a取值的大小变化,决定yt和 St-1对St的影响程度,当a取1时,St= yt;当a取0时,St= St-1。
2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。平滑常数a越接近于1,远期实际值对本期平滑值的下降越迅速;平滑常数a越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。由此,当时间数列相对平稳时,可取较小的a;当时间数列波动较大时,应取较大的a,以不忽略远期实际值的影响。生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。
3.尽管St包含有全期数据的影响,但实际计算时,仅需要两个数值,即yt和 St-1,再加上一个常数a,这就使指数滑动平均具有逐期递推性质,从而给预测带来了极大的方便。
4.根据公式S1=ay1+(1-a)S0,当欲用指数平滑法时才开始收集数据,则不存在y0。无从产生S0,自然无法据指数平滑公式求出S1,指数平滑法定义S1为初始值。初始值的确定也是指数平滑过程的一个重要条件。
如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。
如果仅有从y1开始的数据,那么确定初始值的方法有:
1)取S1等于y1;
2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+ y2+y3)/3等等。

指数平滑法

指数平滑预测法
指以某种指标的本期实际数和本期预测数为基础,引入一个简化的加权因子,即平滑系数,以求得平均数的一种指数平滑预测法。它是加权移动平均预测法的一种变化。平滑系数必须呈大于0、小于1,如0.1、0.4、0.6等。其计算公式为:下期预测数=本期实际数×平滑系数+本期预测数×(1-平滑系数)上列公式是从下列公式演变而成:
下期预测数=本期预测数+ 平滑系数(本期实际数- 本期预测数)这个公式的含义是:在本期预测数上加上一部分用平滑系数调整过的本期实际数与本期预测数的差,就可求出下期预测数。一般说来,下期预测数常介乎本期实际数与本期预测数之间。平滑系数的大小,可根据过去的预测数与实际数比较而定。差额大,则平滑系数应取大一些;反之,则取小一些。平滑系数愈大,则近期倾向性变动影响愈大;反之,则近期的倾向性变动影响愈小,愈平滑。这种预测法简便易行,只要具备本期实际数、本期预测数和平滑系数三项资料,就可预测下期数。如某种产品销售量的平滑系数为0.4,1996年实际销售量为31万件,预测销售量为33万件。则1997年的预测销售量为:
1997年预测销售量= 31万件×0.4+33万件×(1-0.4)=32.2万件

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

猜你喜欢

本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有

邮箱:daokedao3713@qq.com

备案号:鲁ICP备2022001955号-4

网站地图