从电荷的角度来说,电现象的本质是是电荷的定向移动。从能量的角度来看,电现象的本质是是能量的转移或者转换。物质由原子组成,原子由原子核和核外电子组成,原子核带正电,核外电子带负电。核外电子围绕原子核高速运转,他们的带电量正好相等,极性相反,所以物质内部尽管有正电荷和负电荷,但宏观看来不带电。很多物质对核外电子的束缚能力较弱,容易失去电子;也有一些物质对核外电子的吸引力很强,容易得到电子。比如,丝绸和橡胶棒摩擦,橡胶棒带负电,丝绸带正电。干燥的天气时梳头,头发和梳子都会带电。
首先,生物电是在生命活动过程中在生物体内产生的各种电位或电流,包括细胞膜电位、动作电位、心电、脑电等。很多生物都有生物电,教科书上最常见的就是电鳗(由于ATP和点位的变化)的例子,还有含羞草(由刺激点发生的负电位变化)。
原因很复杂(简单的说),当神经细胞受到较强的电刺激时,在阴极产生的局部电反应随刺激增强而增大,超过阈值,就会引起一个能沿神经纤维传导的神经冲动。神经冲动到达的区域伴有膜电位的变化,称动作膜电位(简称动作电位)。这是一个膜电位的反极化过程,即由原来的膜外较膜内正变为膜外较膜内负。因此,发生兴奋的部位与静息部位之间,出现电位差,兴奋部位较正常部位为负,电位可达 100毫伏以上。这个负电位区域可以极快的速度向前传导(这是动物的)植物的也有所不同
电是一种自然现象,指静止或移动的电荷所产生的物理现象,是像电子和质子这样的亚原子粒子之间产生的排斥力和吸引力的一种属性。
自然界的闪电就是一种电现象。电磁力是自然界四种基本相互作用之一。电子运动现象有两种:我们把缺少电子的原子说为带正电荷,有多余电子的原子说为带负电荷。电发展出了现代电力工业和电子科技。
近代研究
但是几千年来,人们只是观察了雷电等自然现象,并不了解电的本质,直到1600年,由于英国科学家威廉·吉尔伯特的严谨科学态度,才开始对于电与磁的现象出现进行了系统性研究。吉尔伯特是英国女王伊丽莎白一世的皇家医生,他对于电和磁特别有兴趣,撰写了第一本阐述电和磁的科学著作《论磁石》。
这是一本具有现代科学精神的书籍,着重于从实验结果论述。吉尔伯特指出,不是只有琥珀可以经过摩擦产生静电的物质,钻石、蓝宝石、玻璃等等,也都可以演示出同样的电学性质,在这里,他成功地击破了琥珀的吸引力是其内秉性质这持续了2000年的错误观念。
吉尔伯特制成的静电验电器可以敏锐的探测静电电荷。在之后的一个世纪,这是最优良的探测静电电荷的仪器。
电与磁的本质
一、电性
依据物质均有电性,而电性有正负之分,且“同电相斥,异电相吸”,可得此结论:
1、任何物质,均可对外释放特定的能量——否则,其无法对其它蕴含能量的物质,产生影响。
2、此特定的能量,所蕴含的能量大小,远小于释放其的物质(可认为前者较后者,低一个能量级别)——否则,在短时间内,物质便会因释放特定的能量(简称为低释),而出现明显的质量损失。
3、任何物质,所低释的能量的种类,均相同,且必为2种——使物质显正性的能量,为阳能;使物质显负性的能量,为阴能。
4、若特定物质,所释放的阳能的强度,大于阴能,则其呈正性;所释放的阳能的强度,小于阴能,则其呈负性;若两者相当,则其呈中性(即既呈正性,又呈负性)。
5、电中性,是物质最稳定的状态;任何非电中性的物质,均有向电中性衍化的趋势。且物质的电性,越偏离电中性,则越不稳定;越接近电中性,则越稳定。
综上,物质因释能时,所低释的阳能与阴能的强度存在差异,而呈现出的性质,是为电性。
二、磁性(一)
如欲明白磁的本质,须先知晓低释与运动的关联:
1、任何物质,都必须低释且运动。
2、低释和运动,是物质进行能量消减、仅有的两种方式。
3、能量的消减,可使物质更为稳定。
4、在封闭的系统中,特定物质在特定时间内,所消减的能量的强度,必为定值。
5、若特定物质经低释所消减的能量增多,则其经运动所消减的能量将减少;反之,若经运动所消减的能量增多,则经低释所消减的能量将减少。
6、对于不具备体积的物质(可视为内部的能量绝对均匀分布的具备体积的物质)而言,其在对外的各方向上,所消减的能量的强度均相同。
三、磁性(二)
特定物质由于运动,使得其内同一能心线(指过特定物质的质心,两端终于其表面的虚拟线段)上,相反的两方向上,所低释的能量强度存在差异,而呈现出的性质,是为磁性。具备磁性的物质,是为带磁体。
磁性有磁阳性与磁阴性之分。
特定物质由于运动,在特定能心线的某方向上:所低释的能量强度高于反方向,而在此能心线的此方向上呈现出的性质,是为磁阳性;所低释能量强度低于反方向,而在此能心线的此方向上呈现出的性质,是为磁阴性;所低释的能量强度等于反方向,而在此能心线的此方向上不具备磁性,是为磁中性。
四、磁性(三)
在呈磁阳性的方向上,特定物质所低释的能量强度越大于反方向,则其在此能心线的此方向上,磁阳性越强;反之,则越弱。
同理,在呈磁阴性的方向上,特定物质所低释的能量强度越小于反方向,则其在此能心线的此方向上,磁阴性越强;反之,则越弱。
特定物质的同一能心线上,相反的两方向上,所低释的能量相抵消后,而剩余的能量,是为磁能。正是磁能的存在,使得特定物质在此能心线上,具备磁性。
所以,只要特定物质的同一能心线上的两相反反向上,所低释的能量的强度,存在差异——那么,此能心线上,便存在磁能。
显然,与运动方向的夹角(0~90°)越大的能心线上,特定物质的磁能的强度越小,磁性相应越弱;反之,与运动方向的夹角(0~90°)越小的能心线上,特定物质的磁能的强度越大,磁性相应越强。
五、磁极
过特定物质质心,且与其运动方向垂直的虚拟平面,是为磁对称面。
磁对称面将特定物质一分为二,其中:与运动方向同向的部分,整体呈磁阴性,称为磁阴极;与运动方向反向的部分,整体呈磁阳性,称为磁阳极。
磁阳极与磁阴极,合称磁极。可以确定,人们习惯使用的N极与S极,分别对应着磁阳极与磁阴极。
磁极具备明显磁性的物质,是为磁体;磁极不具备明显磁性的物质,是为磁中体。
须知特定物质的磁性越弱(即越接近磁中性),越为稳定;磁性越强,越不稳定。所以,同能级的不同磁体,将出现“同极相斥,异极相吸”的现象。
磁阳极或磁阴极总的磁性强度,便是相应磁体磁性的强度。与电性相同,磁性亦可叠加或抵消。对磁中体而言,磁极的磁性不明显,既可因运动速率低引起,亦可由内部物质的磁性相互抵消所致。
六、磁与电的转化
至此,想必各位对磁与电的转化原理,已有较为深入的认识。
未通电时,电子的运动方向并无规律可循;导线内,各电子的磁性基本相互抵消,故导线为磁中体。通电后,大量的电子沿导线定向运动,导线内移动的电子的磁性相互叠加,故导线成为磁体——此即电生磁的原理。
磁感线,实是人为虚拟出的磁性强度线。同一磁感线上,磁性的类型与强度相同——换而言之,同一磁感线上,任意两点间,并无磁能存在。
同理可知,均匀的磁场,实为磁中体——其内任意两点之间,所低释的能量强度,并不存在差异。所以,磁体在均匀的磁场中,并不会因磁性而运动。
而导线做切割磁感线的运动时,运动前后,两处的磁场强度不同,故两者之间存在磁能与磁性,从而诱发具备磁性的电子定向运动,进而产生电流——此即磁生电的原理。
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有
邮箱:daokedao3713@qq.com