平面向量的计算一般有两种方法:一是直接利用几何关系,二是利用坐标关系。
在数学中,利用坐标解决向量问题更普遍。这样,利用向量就建立了几何和代数之间的关系,提供了一种利用代数解决几何问题的方法。
利用复数的计算也可以进行向量计算。利用复数计算向量的好处就是,对于向量的旋转问题有比较简单的算法。
一、平面向量公式:设a=(x,y),b=(x',y')。
1、向量的加法
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0。0的反向量为0
AB-AC=CB。即“共同起点,指向被减”
a=(x,y)b=(x',y')则a-b=(x-x',y-y')
二、平面向量,垂直,平行平移等的关系:
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA+GB+GC=O,则G为△ABC的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是a•b=0。
a⊥b的充要条件是xx'+yy'=0。
零向量0垂直于任何向量。
比较:
共线向量与平行向量关系
由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。
平行向量与相等向量的关系
相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。其中“方向相同”就包含着向量平行的含义。
向量的线性运算:
加法:求两个向量和的运算。
三角形法则:
平行四边形法则:
加法 交换律: a→+b→=b→+a→
加法结合律: (a→+b→)+c→=a→+(b→+c→)
减法:减去一个向量相当于加上这个向量的相反向量。
三角形法则:
表示为: a→−b→=a→+(−b→)
数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa→。
运算律: λ(a→+b→)=λa→+λb→
(λ1+λ2)a→=λ1a→+λ2a→。
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有