在Java语言中,垃圾回收(Garbage Collection)是自动进行的。Java提供了两种不同的垃圾回收方式,即普通GC和强制GC。本文将从多个角度探讨这两种垃圾回收方式的区别。
普通gc和强制gc的区别
1. 定义
普通GC即是自动垃圾回收机制,JVM启动时自动分配内存,并在内存不足的情况下进行垃圾回收。而强制GC则是通过程序的方式强制进行垃圾回收。
2. 触发方式
普通GC的触发方式为当内存占用率达到一定阈值时,垃圾回收器将自动触发垃圾回收。而强制GC需要手动触发,开发人员可以通过System.gc()等代码方式进行垃圾回收操作。
3. 时间间隔
普通GC的时间间隔是不确定的,因为GC机制是自动进行的,需要根据JVM实际情况进行自适应调整。而强制GC可以在需要的时候手动进行,因此时间间隔是可控的。
4. 开销
普通GC的开销比较高,因为需要考虑到内存的使用情况、GC算法、垃圾回收的频率等多种因素。而强制GC是由开发人员手动触发的,因此开销较低。
5. 强制GC的使用场景
强制GC主要用于开发人员在开发调试时的调试工具,可以通过手动控制的方式进行调试操作。此外,当应用程序有明显的内存泄漏问题时,也可以通过强制GC来及时清理内存。
6. 普通GC的使用场景
普通GC适用于大部分应用程序的垃圾回收操作。开发人员可根据JVM的实际情况和应用程序的内存使用情况来进行自适应调整。
综上所述,普通GC和强制GC各有其优缺点,需要根据应用程序实际情况来选择使用。在一般情况下,使用普通GC可以满足大部分应用程序的需要,而强制GC则适用于特殊场景下的垃圾回收操作。
不懂自己或他人的心?想要进一步探索自我,建立更加成熟的关系,不妨做下文末的心理测试。平台现有近400个心理测试,定期上新,等你来测。如果内心苦闷,想要找人倾诉,可以选择平台的【心事倾诉】产品,通过写信自由表达心中的情绪,会有专业心理咨询师给予你支持和陪伴。
常用的GC算法:
1)标记非活动对象
--何为非活动对象,通俗的讲,就是无引用的对象。
追踪root对象算法: 深度追踪root对象,将heap中所有被引用到的root做标志,所有未被标志的对象视为非活动对象,所占用的空间视为非活动内存。
2)清理非活动对象
Copy算法:
方法:将内存分为两个区域(from space和to space)。所有的对象分配内存都分配到from space。在清理非活动对象阶段,把所有标志为活动的对象,copy到to space,之后清楚from space空间。然后互换from sapce和to space的身份。既原先的from space变成to sapce,原先的to space变成from space。每次清理,重复上述过程。
优点:copy算法不理会非活动对象,copy数量仅仅取决为活动对象的数量。并且在copy的同时,整理了heap空间,即,to space的空间使用始终是连续的,内存使用效率得到提高。
缺点:划分from space和to space,内存的使用率是1/2。
Compaction算法:
方法:在清理非活动对象阶段,删除非活动对象占用内存,并且把活动对象向heap的底部移动,直到所有的活动对象被移到heap的一侧。
优点:无须划分from sapce和to space,提高内存的使用率。并且compaction后的内存空间也是连续分配的。
缺点:该算法相对比较复杂。
sun jdk gc介绍:
在减少gc之前,先来看看来自IBM的一组统计数据:
98%的java对象,在创建之后不久就变成了非活动对象;只有2%的对象,会在长时间一直处于活动状态。
如果能对这两种对象区分对象,那么会提交GC的效率。在sun jdk gc中(具体的说,是在jdk1.4之后的版本),提出了不同生命周期的GC策略。
young generation:
生命周期很短的对象,归为young generation。由于生命周期很短,这部分对象在gc的时候,很大部分的对象已经成为非活动对象。因此针对young generation的对象,采用copy算法,只需要将少量的存活下来的对象copy到to space。存活的对象数量越少,那么copy算法的效率越高。
young generation的gc称为minor gc。经过数次minor gc,依旧存活的对象,将被移出young generation,移到tenured generation(下面将会介绍)
young generation分为:
eden:每当对象创建的时候,总是被分配在这个区域
survivor1:copy算法中的from space
survivor2:copy算法中的to sapce (备注:其中survivor1和survivor2的身份在每次minor gc后被互换)
minor gc的时候,会把eden+survivor1(2)的对象copy到survivor2(1)去。
tenured generation:
生命周期较常的对象,归入到tenured generation。一般是经过多次minor gc,还 依旧存活的对象,将移入到tenured generation。(当然,在minor gc中如果存活的对象的超过survivor的容量,放不下的对象会直接移入到tenured generation)
tenured generation的gc称为major gc,就是通常说的full gc。
采用compactiion算法。由于tenured generaion区域比较大,而且通常对象生命周期都比较常,compaction需要一定时间。所以这部分的gc时间比较长。
minor gc可能引发full gc。当eden+from space的空间大于tenured generation区的剩余空间时,会引发full gc。这是悲观算法,要确保eden+from space的对象如果都存活,必须有足够的tenured generation空间存放这些对象。
Permanet Generation:
该区域比较稳定,主要用于存放classloader信息,比如类信息和method信息。
对于spring hibernate这些需要动态类型支持的框架,这个区域需要足够的空间。
这部分内容相对比较理论,可以结合jstat,jmap等命令(当然也可以使用jconsole,jprofile,gciewer等工具),观察jdk gc的情
(
Minor GC
从年 轻代空间(包括 Eden 和 Survivor 区域)回收内存被称为 Minor GC。这一定义既清晰又易于理解。但是,当发生Minor GC事件的时候,有一些有趣的地方需要注意到:
当 JVM 无法为一个新的对象分配空间时会触发 Minor GC,比如当 Eden 区满了。所以分配率越高,越频繁执行 Minor GC。
内存池被填满的时候,其中的内容全部会被复制,指针会从0开始跟踪空闲内存。Eden 和 Survivor 区进行了标记和复制操作,取代了经典的标记、扫描、压缩、清理操作。所以 Eden 和 Survivor 区不存在内存碎片。写指针总是停留在所使用内存池的顶部。
执行 Minor GC 操作时,不会影响到永久代。从永久代到年轻代的引用被当成 GC roots,从年轻代到永久代的引用在标记阶段被直接忽略掉。
质疑常规的认知,所有的 Minor GC 都会触发“全世界的暂停(stop-the-world)”,停止应用程序的线程。对于大部分应用程序,停顿导致的延迟都是可以忽略不计的。其中的真相就 是,大部分 Eden 区中的对象都能被认为是垃圾,永远也不会被复制到 Survivor 区或者老年代空间。如果正好相反,Eden 区大部分新生对象不符合 GC 条件,Minor GC 执行时暂停的时间将会长很多。
所以 Minor GC 的情况就相当清楚了——每次 Minor GC 会清理年轻代的内存
Major GC vs Full GC
大家应该注意到,目前,这些术语无论是在 JVM 规范还是在垃圾收集研究论文中都没有正式的定义。但是我们一看就知道这些在我们已经知道的基础之上做出的定义是正确的,Minor GC 清理年轻带内存应该被设计得简单:
Major GC 是清理永久代。
Full GC 是清理整个堆空间—包括年轻代和永久代。
很不幸,实际上它还有点复杂且令人困惑。首先,许多 Major GC 是由 Minor GC 触发的,所以很多情况下将这两种 GC 分离是不太可能的。另一方面,许多现代垃圾收集机制会清理部分永久代空间,所以使用“cleaning”一词只是部分正确。
这使得我们不用去关心到底是叫 Major GC 还是 Full GC,大家应该关注当前的 GC 是否停止了所有应用程序的线程,还是能够并发的处理而不用停掉应用程序的线程。
这种混乱甚至内置到 JVM 标准工具。下面一个例子很好的解释了我的意思。让我们比较两个不同的工具 Concurrent Mark 和 Sweep collector (-XX:+UseConcMarkSweepGC)在 JVM 中运行时输出的跟踪记录。
考虑到这种情况,最好避免以 Minor、Major、Full GC 这种方式来思考问题。而应该监控应用延迟或者吞吐量,然后将 GC 事件和结果联系起来。
随着这些 GC 事件的发生,你需要额外的关注某些信息,GC 事件是强制所有应用程序线程停止了还是并行的处理了部分事件。
常 用 化 学 试 剂 规 格 和 标 准
(Standards And Grades Of Purity)
-----------------------------------------------------
中 文 简 称 英 文
-----------------------------------------------------
优级纯试剂 GR Guaranteed reagent
分析纯试剂 AR Analytical reagent
化学纯试剂 CP Chemical pure
实验试剂 LR Laboratory reagent
超纯试剂 UP Ultra pure
生化试剂 BC Biochemical
光 谱 纯 SP Spectrum pure
气相色谱 GC Gas chromatography
指 示 剂 Ind Indicator
层 析 用 FCP For chromatograph purpose
工 业 用 Tech Technical grade
除常用规格外还有一些特殊用途试剂
特 纯 EP
分 析 用 PA
合 成 FS
基 准 PT
生物试剂 BR
分 光 纯 UV
红外吸收 IR
液相色谱 LC
核磁共振 NMR
2N中的N表示数量,也有3N,4N等其他规格
色固就是色泽固定的意思
它摈弃了C++中一些繁琐容易出错的东西。其中有一条就是这个GC。 写C/C++程序,程序员定义了一个变量,就是在内存中开辟了一段相应的空间来存值。内存再大也是有限的,所以当程序不再需要使用某个变量的时候,就需要释放这个内存空间资源,好让别的变量来用它。在C/C++中,释放无用变量内存空间的事情要由程序员自己来解决。就是说当程序员认为变量没用了,就应当写一条代码,释放它占用的内存。这样才能最大程度地避免内存泄露和资源浪费。但是这样显然是非常繁琐的。程序比较大,变量多的时候往往程序员就忘记释放内存或者在不该释放的时候释放内存了。而且释放内存这种事情,从开发角度说,不应当是程序员所应当关注的。程序员所要做的应该是实现所需要的程序功能,而不是耗费大量精力在内存的分配释放上。 Java有了GC,就不需要程序员去人工释放内存空间。当Java虚拟机发觉内存资源紧张的时候,就会自动地去清理无用变量所占用的内存空间。当然,如果需要,程序员可以在Java程序中显式地使用System.gc()来强制进行一次立即的内存清理。但是要注意的是,系统并不保证会立即进行释放内存。Java的内存泄漏问题Java的一个重要优点就是通过垃圾收集器(Garbage Collection,GC)自动管理内存的回收,程序员不需要通过调用函数来释放内存。因此,很多程序员认为Java不存在内存泄漏问题,或者认为即使有内存泄漏也不是程序的责任,而是GC或JVM的问题。其实,这种想法是不正确的,因为Java也存在内存泄露,但它的表现与C++不同。随着越来越多的服务器程序采用Java技术,例如JSP,Servlet, EJB等,服务器程序往往长期运行。另外,在很多嵌入式系统中,内存的总量非常有限。内存泄露问题也就变得十分关键,即使每次运行少量泄漏,长期运行之后,系统也是面临崩溃的危险。什么是内存泄漏?在Java中,内存泄漏就是存在一些被分配的对象,这些对象有下面两个特点,首先,这些对象是可达的,即在有向图中,存在通路可以与其相连;其次,这些对象是无用的,即程序以后不会再使用这些对象。如果对象满足这两个条件,这些对象就可以判定为Java中的内存泄漏,这些对象不会被GC所回收,然而它却占用内存。在C++中,内存泄漏的范围更大一些。有些对象被分配了内存空间,然后却不可达,由于C++中没有GC,这些内存将永远收不回来。在Java中,这些不可达的对象都由GC负责回收,因此程序员不需要考虑这部分的内存泄露。通过分析,我们得知,对于C++,程序员需要自己管理边和顶点,而对于Java程序员只需要管理边就可以了(不需要管理顶点的释放)。通过这种方式,Java提高了编程的效率。
因此,通过以上分析,我们知道在Java中也有内存泄漏,但范围比C++要小一些。因为Java从语言上保证,任何对象都是可达的,所有的不可达对象都由GC管理。下面给出了一个简单的内存泄露的例子:在这个例子中,我们循环申请Object对象,并将所申请的对象放入一个Vector中,如果我们仅仅释放引用本身,那么Vector仍然引用该对象,所以这个对象对GC来说是不可回收的。因此,如果对象加入到Vector后,还必须从Vector中删除,最简单的方法就是将Vector对象设置为null。Vector v=new Vector(10); for (int i=1;i<100; i++) { Object o=new Object(); v.add(o); o=null; }
//此时,所有的Object对象都没有被释放,因为变量v引用这些对象。 综上所述,Java也存在内存泄露问题,其原因主要是一些对象虽然不再被使用,但它们仍然被引用。为了解决这些问题,我们可以通过软件工具来检查内存泄露,检查的主要原理就是暴露出所有堆中的对象,让程序员寻找那些无用但仍被引用的对象。
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有