返回
首页>祝由术>心理健康

基因型,vs.,表现型:双因理论的核心概念

时间: 2023-08-26 23:02:59

基因型和表现型是生物学中非常重要的概念,它们是双因理论的核心。基因型是指个体的基因组成,包括所有基因的集合。表现型则是基因型和环境相互作用的结果,包括个体的外在特征和行为。本文将从多个角度分析基因型和表现型的概念及其关系。

基因型 vs. 表现型:双因理论的核心概念

基因型的遗传

基因型是由父母遗传而来的,它决定了个体的基本遗传特征。基因型是由基因组成的,基因是DNA的一部分,它们控制着个体的生长、发育和其他生理特征。基因型可以是纯合子或杂合子。纯合子指两个相同的基因,杂合子则指两个不同的基因。基因型的遗传方式是孟德尔遗传定律,他通过研究豌豆植物的形态改变,发现了遗传的规律,即“隐性和显性”、“分离和自由组合”。

表现型的表现

表现型是由基因型和环境相互作用的结果。环境可以影响个体的表现型,例如孪生子的身高可能会因为环境的不同而有所差异。表现型包括个体的外在特征和行为。外在特征包括身高、体重、颜色等,行为包括反应、习惯、能力等。表现型的表现可以通过基因表达来实现,基因表达是指基因的信息转录成RNA然后转化为蛋白质。蛋白质是构成生命的基本物质之一,它们控制着个体的生理和行为特征。

基因型和表现型的关系

基因型和表现型之间存在复杂的关系。虽然基因型决定了个体的遗传特征,但是个体的表现型并不完全由基因型决定。环境因素也会对表现型产生影响。比如说,一个人可能拥有高智商的基因,但如果他没有得到良好的教育和培养,他的智商可能不会得到充分发挥。同时,基因型也会对环境产生影响。例如,一个人可能拥有易患某种疾病的基因,但如果他遵循健康的生活方式,他可能不会患上这种疾病。因此,基因型和表现型之间存在复杂的相互作用关系。

基因型和表现型的应用

基因型和表现型的研究有广泛的应用价值。在医学领域,基因型可以用于诊断和治疗遗传性疾病,表现型可以用于评估疾病的严重程度和预测疾病的进展。在农业领域,基因型可以用于培育高产、耐病的农作物,表现型可以用于评估农作物的品质和产量。在心理学领域,基因型可以用于研究人类行为和智力的遗传机制,表现型可以用于评估人类行为和智力的表现。

不懂自己或他人的心?想要进一步探索自我,建立更加成熟的关系,不妨做下文末的心理测试。平台现有近400个心理测试,定期上新,等你来测。如果内心苦闷,想要找人倾诉,可以选择平台的【心事倾诉】产品,通过写信自由表达心中的情绪,会有专业心理咨询师给予你支持和陪伴。

一道关于基因自由组合定律的题!!急~~

1
基因型9种(全有),表现型5种(全有)
2
父母产生AB,Ab,aB,ab四种基因的几率都为1/4
(1),黑色概率为(1/4)*(1/4)=1/16
(2),褐色概率:AABb:2*(1/4)*(1/4)=2/16
AaBB:2*(1/4)*(1/4)=2/16
褐色概率=4/16
(3),深蓝色,同褐色=4/16
(4),浅蓝色,同黑色=1/16
所以不通表现型所占比例=10/16
3,
纯合子为黑色,浅蓝色,以及AAbb和aaBB的黄色,概率均为1/16,所以纯合子的总概率为1/4
4,
浅蓝色男性的基因为aabb,所以他产生的精子基因型一定为ab,要产生浅蓝色下一代女性所产生的基因型必须是ab,所以那个女儿基因型为AaBb,在黄色里的概率为4/6,产生ab基因的概率为1/4,他们的后代为女性的概率为1/2
所以P=(4/6)*(1/4)*(1/2)=1/12

生物遗传知识点

生物遗传知识点 生物遗传概率篇一:高中生物运用公式求算几遗传病的概率

运用公式求算两种遗传病的概率

遗传病概率计算是高中生物学教学的一个重点和难点。学生一般能熟练地进行一种遗传病概率的求算,而对两种遗传病概率的求算则感到十分困难。笔者在实际教学中,首先帮助学生总结归纳出求算两种遗传病概率的一般公式,然后应用公式解题,从而使计算简易准确,极大地调动了学生的学习积极性,收到了较好的教学效果。下面简述公式的归纳过程及其应用。

一、公式的归纳

1.首先研究一种遗传病的有关情况,下面以白化病遗传为例:

表1

表中□为任意基因型,m为患白化病概率。A___代表AA或Aa。

从表1中看出:无论亲本的基因型组合如何,子代的表现型都可以表示为“正常”和“患病”两种类型,其子代表现型及几率均可表示为表格中的末相形式。据此可写出两种遗传病遗传图解的一般通式。

2.两种遗传病遗传图解的一般通式设aa控制甲病,bb控制乙病。m为患甲病的几率,n为患乙病的几率。则两种遗传病遗传图解的一般通式如下:(□代表甲性状的任意基因型AA、Aa、aa,■代表乙性状的任意基因型BB、Bb、bb)

图1

3.两种遗传病概率的公式根据上面图解中子代表现型的概率,即可归纳求算两种遗传病概率的一系列公式,列表如表2:

说明:

l)m、n的计算方法为:先写出双亲的基因型,再运用分校法分别求出m、n的值。在充分理解两种遗传病图解的基础上,上述公式无需特殊记忆便可熟练掌握和运用。

2)上述公式虽然是根据两种隐性遗传病的图解推导出来的,但同样适用于两种显性遗传病、一显一隐两种遗传病概率的求算,如下面例3所示。(显性遗传病时,表1中的末格形式应写成□×□→(1-m)aa·mA__·m依然为患病的概率)

例1.人类白化病由隐性基因a控制,血友病由隐性基因h控制。已知某一家庭父亲正常,母亲也正常,但他们的1个孩子白化且患血友病。请问:若这对夫妇再生1个孩子,①患白化的几率?②只患白化的几率?

③只患白化或血友病的几率?④患病的几率?分析:解此题的关键是首先依据题意写出双亲的基因型,再运用分技法分别算出子代患白化几率m和患血友病的几率n。

解:根据题意,可知父亲的基因型是AaXY,母亲的基因型是AaXX。运用分枝法作遗传图解:

Aa×Aa→1/4AA·2/4Aa·1/4aa得:m=/4

H

H

h

X?1/4XY?1/4XX?1/4XYXY?XX?1/4X

得:n=1/4

运用公式,该题解答依次如下:①患白化几率m=1/4

②只患白化几率:运用公式3

m-mn=1/4-l/4×1/4=3/16③只患白化或血友病几率=只患1种病。运用公式6

m+n—2mn=1/4+l/4-2×1/4×1/4=3/8④患病几率:运用公式7

m+n—mn=1/4+l/4一1/4×1/4=7/16

例2.具TtGg基因型的个体与ttGg基因型的个体交配,其后代:①具两种显性性状个体的几率?②只有1种显性性状个体的几率?③具有隐性性状个体的几率?④不具显性性状个体的几率?

解:解题的关键依然是运用分枝法求出m、n的值。

假设显性性状为正常性状,隐性性状为患病性状。分别作遗传图解:

HHhHHHHhh

?1t/2ttTt?tt?1/2T

得m=1/2

Gg?Gg?1/4GG?2/4Gg?1/4gg,

得n=1/4

运用公式,该题解答依次如下:

①具两种显性性状=不患病。运用公式8

(1?m)(1?n)?(1?1/2)(1?1/4)?3/8②只有一种显性性状=只患一种病。运用公式6

?1/4?2?1/2?1/4?1/2m?n?2mn?1/2

③具有隐性性状=患病。运用公式7

?1/4?1/2?1/4?5/8m?n?mn?1/2

④不具显性性太=同时患两种病。运用公式5

?1/4?1/8mn?1/2

侧1.人类多指基因(T)是正常基因(t)的显性,聋哑基因(a)是正常基因(A)的隐

性,都在常染色体上,而且都独立遗传。1个家庭中,父母亲都是多指而听觉正常,他们有1个聋哑但手指正常的孩子,则下一个孩子患两种病、患l种病、正常的概率分别是多少?解:根据题意,可知父亲的基因型是TtAa,母亲的基因型是TtAa。运用分枝法作遗传图解:

?2t/4T?lt/4T,TTt?Tt?l/4t

得m?2/4?1/4?3/4

Aa?Aa?l/4AA?2/4Aa?l/4aa,得n=l/4

运用公式,该题解答依次如下:

①下1个孩子患两种病的几率:mn?1/4?3/4?3/16

②下1个孩子只患1种病的几率:运用公式6

?3/4?2?1/4?3/4?5/8m?n?2mn?1/4

③下1个孩子正常的几率:运用公式8

)3/16(1?m)(1?n)?(1?3/4)?(1?1/4?

例4.为了说明近亲结婚的危害性,某医生向学员讲解了下列有白化和红绿色盲的两种

遗传病的家族系谱图。白化病基因为a,红绿色盲基因为b。

①写出下列个体可能的基因型:Ⅲ-8____,Ⅲ-10

②若8与10结婚,生育子女中只患白化或红绿色盲一种遗传病的几率是______,同时患两种遗传病的几率是_____。

③若9与7结婚,子女中可能患的遗传病是______,发病的几率是______。

解:①分析和正确写出7-10号个体的基因型和比例,是解答②③小题关键。

a.7号的色觉基因型肯定为XY,而肤色基因型则有AA和Aa两种可能,比例为1:

BBB

2,故7号的基因型为AAXY或AaXY,或写成1/3AAXY和2/3AaXY。

B

B

b.8号的肤色基因型肯定为aa,而色觉基因型则有XX和XX两种可能,比例为1:1,故8的基因型为aaXBXB或aaXBXb。或写成1/2aaXBXB或1/2aaXBXb。

c.9号同8号,基因型写成1/2aaXBXB或1/2aaXBXb。

d.10号的色觉基因型肯定为XY,而肤色基因型则有AA或Aa两种可能,比例为1:

bbb

2,故10号基因型AAXY或AaXY。或写成1/3AAXY和1/3AaXY。

b

b

BBBb

②由于双亲的基因型不确定,所以如何运用分枝法求出m、n的值是解题的另一关键。从前面分析可知:8号的肤色基因型为aa,10号的肤色基因型为1/3AA和2/3Aa,分别作遗传图解并相加:

aa?1/3AA?aa?2/3Aa?2/3Aa?1/3aa,

得m=1/3。

BBBb

同理:8号的色觉基因型为1/2XX和1/2XX,10号的色觉基因型XY。分别作

b

遗传图并相加:

1/2XBXB?XbY?1/2XBXb?XbY?3/8XBXb?3/8XBY?1/8XbXb?1/8XbY.

得n?1/8?1/8?1/4。

故题中求8和10结婚,生育子女中只患白化或红绿色盲的概率=只患一种遗传病的几率,直接运用表中公式6:

m?n?2mn?1/3?1/4?2?1/3?1/4?5/12

同时患两种病的几率为mn?1/3?1/4?1/12。

③解题思路同上。9号的肤色基因型肯定为aa,7号的肤色基因型为1/3AA和2/3Aa。分别作遗传图解并相加。

aa?1/3AA?aa?2/3Aa??2/3Aa?1/3aa得m=1/3。

BBBb

9号色觉基因型为1/2XX和1/2XX,7号色觉基因型肯定为XY。分别作遗传

B

图解并相加:

1/2XBXB?XBY?1/2XBXb?XBY?3/8XBXB?3/8XBY?1/8XBXb?1/8XbY

得n=1/8

因为m、n皆不等于零,故7与9结婚,子女中可能患的病是白化和红绿色盲。发病的

几率直接运用公式7求得:

m?n?mn?1/3?1/8?1/3?1/8?5/12

通过以上倒题解析,我们发现两种遗传概率计算的一般步骤为:1)写出双亲的基因型。2)运用分枝法求出m、n的值。3)套用公式计算。因此,貌似复杂、无从下手的两种遗传病概率的计算,在学生掌握双亲基因型的推导、单种遗传病概率的求算,以及本文提供的公式后,便显得简易而迎刃而解了。运用上述公式,在解答“双亲基因型不确定时计算子女患病概率”的这一类题型时(如例4),尤其显得精妙和独到。

41.据报道,江苏某少年成为上海心脏移植手术后存活时间最长的“换心人”。他所患的心脏病有明显的家族性。下面的遗传系谱图(右图)是其部分家庭成员的情况,其中Ⅲ11表示该少年。经查,他母亲的家族史上无该病患者。请回答下面的问题。

(1)该病最可能的遗传方式是。

(2)依据上述推理,该少年的基因型是(该病显性基因为A,隐性基因为a)。

(3)该少年的父母如果再生一个孩子,是正常男孩的概率是。

(4)有人说:该少年经手术冶疗后已经康复,将来只要和一个正常女性结婚,他的子女就不会患此病。你认为这种说法正确吗?试简要说明。

42.基因突变、基因重组和染色体变异是生物产生可遗传变异的三个来源。右图是生产实践中的几种不同育种方法。请分析回答下面的问题。

(1)图中A、D所示方向的育种方式与A→B→C方向所示的育种方式相比较,后者的优越性主要表现在。

(2)过程B常用的方法为,过程F经常采用的药剂为。

(3)由G→J的过程所涉及到的生物工程技术有和。

(4)请分别例举出根据①基因突变、②基因重组、③染色体变异三项原理而采用的育种方法:

生物遗传概率篇二:生物遗传概率计算法

1、隐性纯合突破法:

①常染色体遗传

显性基因式:A_(包括纯合体和杂合体)

隐性基因型:aa(纯合体)

如子代中有隐性个体,由于隐性个体是纯合体(aa),基因来自父母双方,即亲代基因型中必然都有一个a基因,由此根据亲代的表现型作进一步判断。如A_×A_→aa,则亲本都为杂合体Aa。

②性染色体遗传

显性:XB_,包括XBXB、XBXb、XBY

隐性:XbXb、XbY

若子代中有XbXb,则母亲为_Xb,父亲为XbY

若子代中有XbY,则母亲为_Xb,父亲为_Y

2、后代性状分离比推理法:

①显性(A_)︰隐性(aa)=3︰1,则亲本一定为杂合体(Aa),即Aa×Aa→3A_︰1aa②显性(A_)︰隐性(aa)=1︰1,则双亲为测交类型,即Aa×aa→1Aa︰1aa

③后代全为显性(A_),则双亲至少一方为显性纯合,即AA×AA(Aa、aa)→A_(全为显性)

如豚鼠的黑毛(C)对白毛(c)是显性,毛粗糙(R)对光滑(r)是显性。试写出黑粗×白光→10黑粗︰8黑光︰6白粗︰9白光杂交组合的亲本基因型。

依题写出亲本基因式:C_R_×ccrr,后代中黑︰白=(10+8)︰(6+9),粗︰光=(10+6)︰(8+9),都接近1︰1,都相当于测交实验,所以亲本为CcRr×ccrr。

3、分枝分析法:

将两对或两对以上相对性状的遗传问题,分解为两个或两个以上的一对相对性状遗传问题,按基因的分离规律逐一解决每一性状的遗传问题。

如小麦高杆(D)对矮杆(d)是显性,抗锈病(T)对不抗锈病(t)是显性。现有两个亲本杂交,后代表现型及比例如下,试求亲本的基因型。

高杆抗锈病(180),高杆不抗锈病(60),

矮杆抗锈病(179),矮杆不抗锈病(62)。

将两对性状拆开分别分析:

高杆(180+60)︰矮杆(179+62)≈1︰1,则双亲基因型分别是Dd和dd;抗锈病(180+179)︰不抗锈病(60+62)≈3︰1,则双亲基因型分别是Tt和Tt。综上所述,双亲的基因型分别是:

DdTt和ddTt。

二、遗传概率的两个基本法则

1、互斥相加(加法定理):若两个事件是非此即彼的或互相排斥的,则出现这一事件或另一事件的概率是两个事件的各自概率之和。如事件A与B互斥,A的概率为p,B的概率为q,则A与B中任何一事件出现的概率为:P(A+B)=p+q。

推论:两对立事件(必有一个发生的两个互斥事件)的概率之和为1。如生男概率+生女概率=1;正常概率+患病概率=1。

2、独立相乘(乘法定理):两个或两个以上独立事件同时出现的概率是它们各自概率的乘积。如A事件的概率为p,B事件的概率为q,则A、B事件同时或相继发生的概率为:P(A·B)=p·q。

三、遗传规律中的概率

1、Aa×Aa→1AA︰2Aa︰1aa

①若某个体表现型为显性性状,其基因型为AA或Aa,为杂合体的概率是2/3,为纯合体的.概率是1/3。

②若某个体表现型为未知,则其基因型为AA或Aa或aa,为杂合体的概率是1/2;若连续自交n代,后代中为杂合体的概率是(1/2)n,纯合体的概率是

1-(1/2)n,显性纯合体的概率是1/2-(1/2)n-1,

纯合体与杂合体的比例为(2n-1)︰1。

③若为隐性遗传病,则小孩的患病概率为1/4,正常的概率为3/4

④若为显性遗传病,则小孩的患病概率为3/4,正常的概率为1/4。

2、XBXb×XBY→XBXB︰XBXb︰XBY︰XbY

①若为隐性遗传病,则小孩的患病概率为1/4,男孩的患病概率为1/2,女孩的患病概率为0②若为显性遗传病,则小孩的患病概率为3/4,男孩的患病概率为1/2,女孩的患病概率为100%

3、XBXb×XbY→XBXb︰XbXb︰XBY︰XbY

①若为隐性遗传病,则小孩的患病概率为1/2,男孩的患病概率为1/2,女孩的患病概率为1/2②若为显性遗传病,则小孩的患病概率为1/2,男孩的患病概率为1/2,女孩的患病概率为1/2

4、XbXb×XbY→XbXb︰XbY

①若为隐性遗传病,则小孩的患病概率为100%

②若为显性遗传病,则小孩的患病概率为0

余此类推。

四、遗传概率的常用计算方法

1、用分离比直接计算

如人类白化病遗传:Aa×Aa→1AA︰2Aa︰1aa=3正常︰1白化病,生一个孩子正常的概率为3/4,患白化病的概率为1/4。

2、用产生配子的概率计算

如人类白化病遗传:Aa×Aa→1AA︰2Aa︰1aa,其中aa为白化病患者,再生一个白化病孩子的概率为父本产生a配子的概率与母本产生a配子的概率的乘积,即1/2a×1/2a=1/4aa。

3、用分枝分析法计算

多对性状的自由组合遗传,先求每对性状的出现概率,再将多个性状的概率进行组合,也可先算出所求性状的雌雄配子各自的概率,再将两种配子的概率相乘。

例:人类的多指是一种显性遗传病,白化病是一种隐性遗传病,已知控制这两种疾病的等位基因都在常染色体上,而且都是独立遗传的。在一个家庭中父亲是多指,母亲正常,他们有一个患白化病但手指正常的孩子,则下一个孩子正常或同时患有此两种疾病的几率分别是

A、3/4B、3/8,1/8C、1/4D、1/4,1/8

解析:①设控制多指基因为P,控制白化病基因为a,则父母和孩子可能的基因型为:父P_A_,母ppA_,患病孩子ppaa。由患病孩子的隐性基因,可推知父亲为PpAa,母亲为ppAa。

②下一个孩子正常为ppA_(1/2×3/4=3/8),同时患两病的个体为Ppaa(1/2×1/4=1/8)。即正确答案为B

③扩展问题:下一个孩子只患一种病的几率是多少?

解法一:用棋盘法写出后代基因型,可得知为1/2。

解法二:设全体孩子出现几率为1,从中减去正常和患两病的比率,即得:1-3/8-1/8=1/2。

解法三:根据加法定理与乘法定理,在所有患病孩子中减去患两病孩子的几率即得。1/2+1/4-2×1/2×1/4=1/2。

生物遗传概率篇三:高中生物遗传概率的计算方法

遗传概率的计算方法(高中生物)

概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下:

一、某一事件出现的概率计算法

例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。

解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2

二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法

例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少?

解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9

三、利用不完全数学归纳法

例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。

解析:第一代Aa第二代1AA2Aa1aa杂合体几率为1/2

第三代纯1AA2Aa1aa纯杂合体几率为(1/2)2第n代杂合体几率为(1/2)n-1

正确答案:杂合体几率为(1/2)n-1

四、利用棋盘法

例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是()

A.1/2、1/8、5/8B.3/4、1/4、5/8C.1/4、1/4、1/2D.1/4,1/8,1/2

解析:据题意分析,先推导出双亲的基因型为TtAa(父),ttAa(母)。然后画棋盘如下:

正确答案:A

五、利用加法原理和乘法原理的概率计算法

例题5(同上例题4):解析:(1)据题意分析,先推导出双亲的基因型为TtAa(父亲),ttAa(母亲)。据单基因分析法(每对基因单独分析),若他们再生育后代,则Tt×tt→1/2Tt,即多指的概率是1/2;Aa×Aa→1/4aa,即白化病的概率是1/4。(2)生下一个孩子同时患两种病的概率:P多指(1/2Tt)又白化(1/4aa)=1/2×1/4=1/8(乘法原理)。(3)生下一个孩子只患一种病的概率=1/2+1/4—1/8×2=1/2或1/2×3/4+1/4×1/2=1/2(加法原理和乘法原理)。⑷生下一个孩子患病的概率=1/2+1/4—1/8×1=5/8(加法原理和乘法原理)。正确答案:A

六、数学中集合的方法

例题6:一对夫妇的子代患

遗传病甲的概率是a,不患遗传病甲的概率是b;患遗传病乙的概率是c,不患遗传病乙的概率是d

。那么下列表示这对夫妇生出只患甲、乙两种病之一的概率的表达式正确的是:

A、ad+bcB、1-ac-bdC、a+c-2acD、b+d-2bd

解析:该题若用遗传病系谱图来解比较困难,若从数学的集合角度入手,用

作图法分析则会化难为易。下面我们先做出图1来验证A表达式,其中大圆

表示整个后代,左小圆表示患甲病,右小圆表示患乙病,则两小圆的交集部

分表示患甲、乙两种病(ac)两小圆除去交集部分表示只患甲病(ad)或乙

病(bc),则只患一种病的概率为ad+bc。依次类推,可以用此方法依次验证

余下三个表达式的正确性。正确答案:ABCD

概率是对某一可能发生的事件的估计,是指总事件与特定事件的比例,其范围从0到1.遗传概率的计算是一个难点,其中关键是怎样把握整体“1”,研究的整体“1”的范围不同,概率大小就不同,整体“1”的范围越大,则某些性状出现的概率越小,反之则越大。在绝大部分的题目中,只要能正确理解整体“1”,则计算概率就不难了,分类分析如下:

1、杂交子代确定了表现型和基因型,求表现型和基因型的概率

例1、一对夫妻都携带了白化致病基因,求生一个白化病孩子的概率?

答案:1/4

解析:因为孩子的表现型是白化病,基因型是aa,故整体1就是所有孩子,则生一个白化病孩子的概率是1/4.

2、、杂交子代确定了表现型,但没确定基因型,求某基因型的概率

例2:一对表现正常的夫妇生了一男一女两个孩子,其中男孩正常,女孩患有某种遗传病。该男孩长大后,和一个其母亲是该遗传病患者的正常女人结婚,婚后生了一个表现正常的儿子,问这个儿子携带患病基因的概率是

()

A.3/5B.5/9C.4/9D.11/18答案:A

解析:首先判断该病的遗传方式:无中生有为隐性,生女患病为常隐,则夫妇的基因型都为Aa,男孩表现型正常,他的基因型可能为AA或Aa,把这两种基因型看作是整体“1”,其比例各为1/3和2/3,与正常女人的婚配方式有两种:1/3AA×Aa;2/3Aa×Aa。把这两种婚配方式看作是一个整体“1”,则所生孩子基因型Aa出现的概率可表示如下:

P:1/3AA×AaP:2/3Aa×Aa

↓↓

F1:1/3×1/2AA1/3×1/2Aa

1/4aaF1:2/3×1/4AA2/3×2/4Aa2/3×

因为儿子表现型已经正常,那么aa所出现的机会要从整体1中去除,整体1中的两种基因型比例要重新分配,即Aa为:Aa/(Aa+AA)=(1/6+2/6)/5/6=3/5。

3、求有关自交后代某基因型的概率

①自交过程中不淘汰个体②自交过程中每一代都淘汰某种基因型

例3、让基因型为Aa的植物体连续自交4代,则所得到的该生物种群中基因型为AA的个体所占比例是多少?如果逐代淘汰基因型为aa的个体,则所得到的该生物种群中基因型为AA的个体所占比例是多少?答案:15/32AA15/17AA

解析:让基因型为Aa的个体连续自交4代,不逐代淘汰,每一自交的子代都看成整体1,很易推知杂合子Aa

4

占F4代个体总数的(1/2),即为1/16。则F4代基因型及比例为15/32AA+2/32Aa+15/32aa。如果逐代淘汰aa的

基因型,则每一代都必须先淘汰aa的个体,再把剩下的个体看成整体1,再计算不同基因型个体的概率,如果不先淘汰aa个体就计算个体的概率,就会出现错误。具体分析如下表:

根据表格可知AA的个体占15/17

当然我们也可以快速的解答第二问,因为是自交,逐代淘汰aa的个体与到第F4代一次性淘汰aa的个体,结果是一样的。到第F4代各个体的比例如上,一次性淘汰15/32aa之后再进行比例换算,基因型为AA的个体占15/17。

4、求自由(随机)交配中某表现型的基因型的概率

例4、果蝇灰身(B)对黑身(b)为显性,现将纯种灰身果蝇与黑身果蝇杂交,

产生的F1代在自交产生的F2代,将F2代中所有黑身果蝇除去,让灰身果蝇自由交配产生F3代。问F3代中灰身果蝇Bb的概率是()A.1:2B.4:5C.4:9D.2:3答案:C

解析:F2中的基因型应为1/4BB、2/4Bb、1/4bb,当除去全部黑身后剩下的灰身果蝇为1,则灰身基因型应为1/3BB、2/3Bb,让这些灰身果蝇自由交配时,

则一共有四种交配方式:

①2/3Bb×2/3Bb②1/3BB×1/3BB③1/3BB(雌)×2/3Bb(雄)④2/3Bb(雌)×1/3BB(雄)

2022高二生物必修二知识点框架

2021高二生物必修二知识点框架有哪些你知道吗?生物学在实现我国的社会主义现代化建设中,有着重要的作用,生物课是高级中学开设的一门基础课程。一起来看看2021高二生物必修二知识点框架,欢迎查阅!

高二生物必修二知识点总结

1、生物体没有显现出来的性状称隐性性状隐性性状是具有一对相对性状的纯合亲本杂交所得子

一代中没有显现出来的那个亲本的性状,而不是一般意义上的没有显现出来的性状。

2、在一对相对性状的遗传实验中,双亲只具有一对相对性状不是“双亲只具有一对相对性状”,而是研究者“只关注了一对相对性状”。

不存在只具有一对相对性状的生物。

3、杂合子自交后代没有纯合子理论上,具有一对等位基因的杂合子,自交的后代中有一半是纯合子。

4、纯合子杂交后代一定是纯合子相同的纯合子杂交后代是纯合子;

不同的纯合子杂交后代是杂合子。

5、基因在子代体细胞中出现的机会相等基因包括核基因和质基因两类,对于有性生殖的生物来说:核基因在子代体细胞中出现的机会相等;

质基因在子代体细胞中出现的机会是不相等的。

6、基因分离定律和基因自由组合定律具有相同的细胞学基础二者的细胞学基础不同;

前者是同源染色体的分离,后者是非同源染色体的自由组合。

7、基因型相同,表现型一定相同基因型相同,表现型也可能不同。

原因是环境条件不同。

8、表现型相同,基因型一定相同表现型相同,基因型可以不同。

如,在完全显性时,含有相同显性基因的个体。

9、基因型不同,表现型一定不同基因型不同,表现型完全可能相同。

如,在完全显性时,含有相同显性基因的个体。基因型不同,表现型可以不同。如,在完全显性时,隐性纯合子与含有显性基因的个体。

10、表现型不同,基因型一定不同表现型不同,基因型也可能相同,原因是环境条件不同。

11、所有的生物都可以进行减数分裂只有能进行有性生殖的生物,才可能进行减数分裂。

12、细胞连续分裂两次,一定是发生了减数分裂若染色体只复制一次,而细胞连续分裂两次,那么,发生的一定是减数分裂;

若细胞连续分裂两次,染色体也复制了两次,那么,发生的只能是有丝分裂。

13、体细胞能进行减数分裂体细胞不能进行减数分裂,成熟的精原细胞和卵原细胞能进行减数分裂。

14、生殖细胞能进行减数分裂生殖细胞不能进行减数分裂。

15、减数分裂产生的子细胞就是成熟的生殖细胞减数分裂产生的子细胞,还需要进一步发育才能成为生殖细胞。

16、细胞减数分裂过程中,染色体都能两两配对细胞减数分裂过程中,只有同源染色体才能两两配对。

17、只有进行减数分裂的细胞中才有同源染色体能进行减数分裂的生物,其体细胞中也有同源染色体。

18、体细胞中没有同源染色体,生殖细胞中有同源染色体对于多细胞生物而言,体细胞中只有一个染色体组的单倍体的体细胞中没有同源染色体,除此之外,体细胞中都是具有同源染色体的;

二倍体生物的生殖细胞中没有同源染色体;多倍体生物的生殖细胞中理论上存在的同源染色体。

高中生物必修二知识

一、相对性状

性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:同一种生物的同一种性状的不同表现类型。

1、显性性状与隐性性状

显性性状:在DD×dd 杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。

决定显性性状的为显性遗传因子(基因),用大写字母表示。

隐性性状:在DD×dd杂交试验中,F1 的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为

隐性。决定隐性性状的为隐性基因,用小写字母表示。

附:性状分离:在杂种后代中出现不同于亲本性状的现象.如在DD×dd杂交实验中,杂合F1代自

交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。

2、显性基因与隐性基因

显性基因:控制显性性状的基因。

隐性基因:控制隐性性状的基因。

附:基因:有遗传效应的DNA片段P67

等位基因:位于一对同源染色体上的相同位置上,决定1对相对性状的两个基因。

非等位基因——包括非同源染色体上的基因及同源染色体的不同位置的基因。

3、纯合子与杂合子

纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离): AA的个体)

杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)

4、表现型与基因型

表现型:指生物个体实际表现出来的性状。

基因型:与表现型有关的基因组成。

(关系:基因型+环境 → 表现型)

5、 杂交与自交

杂交:基因型不同的生物体间相互交配的过程。

自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)

附:测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)

正交和反交:二者是相对而言的, 如甲(♀)×乙()为正交,则甲()×乙(♀)为反交;

如甲()×乙(♀)为正交,则甲(♀)×乙()为反交。

高中生物必修二重要知识

1.孟德尔通过分析 豌豆杂交实验 的结果,发现了 生物遗传 的规律。

2.孟德尔在做杂交实验时,先除去未成熟花的全部雄蕊,这叫做 去雄 。

3.一种生物的同一性状的不同表现类型,叫做 相对性状 。

4.孟德尔把F1显现出来的性状,叫做 显性性状 ,未显现出来的性状叫做 隐性性状 。在杂种后代中,同时出现 显性性状 和 隐性性状 的现象叫做性状分离 。

5.孟德尔对分离现象的原因提出了如下假说:

(1)生物的性状是由 遗传因子 决定的,其中决定显现性状的为 显性遗传因子 ,用 大写字母 表示,决定隐性性状的为 隐性遗传因子 ,用 小写字母表示。

(2)体细胞中的 遗传因子 是成对存在的, 遗传因子 组成相同的`个体叫做 纯合子 , 遗传因子 组成不同的个体叫做 杂合子 。

(3)生物体在形成生殖细胞——配子时, 成对的遗传因子 彼此分离,分别进入 不同的配子 中,配子中只含有 每对遗传因子 的一个。

(4)受精时, 雌雄配子 的结合是随机的。

6.测交是让 F1 与 隐性纯合子 杂交。

7.孟德尔第一定律又称 分离定律 。在生物的体细胞中,控制同一性状的 遗传因子 成对存在的,不相融合,在形成配子时,成对的 遗传因子发生分离,分离后的 遗传因子 分别进入不同配子中,随 配子 遗传给后代。


2021高二生物必修二知识点框架相关文章:

★2021生物必修二复习提纲

★2020高二生物必修二知识点总结

★高中生物必修二知识点2020

★高中生物必修一思维导图

★高中生物必修二知识点总结

★高中生物必修必备知识框架

★高二生物必修二知识点

★高中生物必修二知识点归纳

★高二生物必修二知识点总结

★高二生物必修二学习必考知识点

孟德尔遗传定律总结

生物的遗传·孟德尔遗传定律 

任何一门学科的形成与发展,总是同当时热中于这门科学研究的杰出人物紧密相关,遗传学的形成与发展也不例外,孟德尔就是遗传学杰出的奠基人。孟德尔1822年出生于当时奥地利海森道夫地区的一个贫苦农民家庭,他的父亲擅长于园艺技术,在父亲的直接熏陶和影响之下,孟德尔自幼就爱好园艺。1843年,他中学毕业后考入奥尔谬茨大学哲学院继续学习,但因家境贫寒,被迫中途辍学。1843年10月,因生活所迫,他步入奥地利布隆城的一所修道院当修道士。从1851年到1853年,孟德尔在维也纳大学学习了4个学期,系统学习了植物学、动物学、物理学和化学等课程。与此同时,他还受到了从事科学研究的良好训练,这些都为他后来从事植物杂交的科学研究奠定了坚实的理论基础。1854年孟德尔回到家乡,继续在修道院任职,并利用业余时间开始了长达12年的植物杂交试验。在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。孟德尔的这篇不朽论文虽然问世了,但令人遗憾的是,由于他那不同于前人的创造性见解,对于他所处的时代显得太超前了,竟然使得他的科学论文在长达35年的时间里,没有引起生物界同行们的注意。直到1900年,他的发现被欧洲三位不同国籍的植物学家在各自的豌豆杂交试验中分别予以证实后,才受到重视和公认,遗传学的研究从此也就很快地发展起来。一、孟德尔的分离规律豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对相对性状的遗传规律。所谓相对性状,即指同种生物同一性状的不同表现类型,如豌豆花色有红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。1.显性性状与隐性性状大家知道,孟德尔的论文的醒目标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同植株间进行异花传粉。如图2-4所示高茎豌豆与矮茎豌豆异花传粉的示意图。结果发现,无论是以高茎作母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。又如,纯种的红花豌豆和白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。2.分离现象及分离比在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。孟德尔让上述F1的高茎豌豆自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。如图2-4A所示。孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。(2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。3.对性状分离现象的解释孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的性状分离比,他仍感到困惑不解。经过一番创造性思维后,终于茅塞顿开,提出了遗传因子的分离假说,其主要内容可归纳为:(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)。(2)遗传因子在体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精卵细胞带入。在形成配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。(3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。(4)杂种F1所产生的不同类型的配子,其数目相等,而雌雄配子的结合又是随机的,即各种不同类型的雌配子与雄配子的结合机会均等。为了更好地证明分离现象,下面用一对遗传因子的图解来说明孟德尔的豌豆杂交试验及其假说,如图2-5所示。我们用大写字母D代表决定高茎豌豆的显性遗传因子,用小写字母d代表矮茎豌豆的隐性遗传因子。在生物的体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在性状表现上则接近于3(高)∶1(矮)。因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。基因型与表现型我们已经看到,在上述一对遗传因子的遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的配子结合成的合子发育而成的个体叫做纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为杂合体,如Dd。基因型是生物个体内部的遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是性状表现的内在因素,而表现型则是基因型的表现形式。由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有分离现象——既有高茎,也有矮茎。4.分离规律的验证前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。如图2-6所示测交实验的方法。孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。5.分离规律的实质孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢?这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。思考题孟德尔从开始试验到最后得出分离规律,都进行了哪些工作?这个过程对我们从事科学研究有何启示?二、孟德尔的自由组合规律孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者,又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。1.杂交试验现象的观察孟德尔在进行两对相对性状的杂交试验时,仍以豌豆为材料。他选取了具有两对相对性状差异的纯合体作为亲本进行杂交,一个亲本是结黄色圆形种子(简称黄色圆粒),另一亲本是结绿色皱形种子(简称绿色皱粒),无论是正交还是反交,所得到的F1全都是黄色圆形种子。由此可知,豌豆的黄色对绿色是显性,圆粒对皱粒是显性,所以F1的豌豆呈现黄色圆粒性状。如果把F1的种子播下去,让它们的植株进行自花授粉(自交),则在F2中出现了明显的形状分离和自由组合现象。在共计得到的556粒F2种子中,有四种不同的表现类型,其数目分别为:如果以数量最少的绿色皱形种子32粒作为比例数1,那么F2的四种表现型的数字比例大约为9∶3∶3∶1。如图2-7所示豌豆种子两对相对性状的遗传实验。从以上豌豆杂交试验结果看出,在F2所出现的四种类型中,有两种是亲本原有的性状组合,即黄色圆形种子和绿色皱形种子,还有两种不同于亲本类型的新组合,即黄色皱形种子和绿色圆形种子,其结果显示出不同相对性状之间的自由组合。2.杂交试验结果的分析孟德尔在杂交试验的分析研究中发现,如果单就其中的一对相对性状而言,那么,其杂交后代的显、隐性性状之比仍然符合3∶1的近似比值。以上性状分离比的实际情况充分表明,这两对相对性状的遗传,分别是由两对遗传因子控制着,其传递方式依然符合于分离规律。此外,它还表明了一对相对性状的分离与另一对相对性状的分离无关,二者在遗传上是彼此独立的。如果把这两对相对性状联系在一起进行考虑,那么,这个F2表现型的分离比,应该是它们各自F2表现型分离比(3∶1)的乘积:这也表明,控制黄、绿和圆、皱两对相对性状的两对等位基因,既能彼此分离,又能自由组合。3.自由组合现象的解释那么,对上述遗传现象,又该如何解释呢?孟德尔根据上述杂交试验的结果,提出了不同对的遗传因子在形成配子中自由组合的理论。因为最初选用的一个亲本——黄色圆形的豌豆是纯合子,其基因型为YYRR,在这里,Y代表黄色,R代表圆形,由于它们都是显性,故用大写字母表示。而选用的另一亲本——绿色皱形豌豆也是纯合子,其基因型为yyrr,这里y代表绿色,r代表皱形,由于它们都是隐性,所以用小写字母来表示。由于这两个亲本都是纯合体,所以它们都只能产生一种类型的配子,即:YYRR——YRyyrr——yr二者杂交,YR配子与yr配子结合,所得后代F1的基因型全为YyRr,即全为杂合体。由于基因间的显隐性关系,所以F1的表现型全为黄色圆形种子。杂合的F1在形成配子时,根据分离规律,即Y与y分离,R与r分离,然后每对基因中的一个成员各自进入到下一个配子中,这样,在分离了的各对基因成员之间,便会出现随机的自由组合,即:(1) Y与R组合成YR;(2)Y与r组合成Yr;(3)y与R组合成yR;(4)y与r组合成yr。由于它们彼此间相互组合的机会均等,因此杂种F1(YyRr)能够产生四种不同类型、相等数量的配子。当杂种F1自交时,这四种不同类型的雌雄配子随机结合,便在F2中产生16种组合中的9种基因型合子。由于显隐性基因的存在,这9种基因型只能有四种表现型,即:黄色圆形、黄色皱形、绿色圆形、绿色皱形。如图2-8所示它们之间的比例为9∶3∶3∶1。这就是孟德尔当时提出的遗传因子自由组合假说,这个假说圆满地解释了他观察到的试验结果。事实上,这也是一个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个遗传定律——自由组合规律,也有人称它为独立分配规律。4.自由组合规律的验证与分离规律相类似,要将自由组合规律由假说上升为真理,同样也需要科学试验的验证。孟德尔为了证实具有两对相对性状的F1杂种,确实产生了四种数目相等的不同配子,他同样采用了测交法来验证。把F1杂种与双隐性亲本进行杂交,由于双隐性亲本只能产生一种含有两个隐性基因的配子(yr),所以测交所产生的后代,不仅能表现出杂种配子的类型,而且还能反映出各种类型配子的比数。换句话说,当F1杂种与双隐性亲本测交后,如能产生四种不同类型的后代,而且比数相等,那么,就证实了F1杂种在形成配子时,其基因就是按照自由组合的规律彼此结合的。为此,孟德尔做了以下测交试验,如图2-9所示。实际测交的结果,无论是正交还是反交,都得到了四种数目相近的不同类型的后代,其比数为1∶1∶1∶1,与预期的结果完全符合。这就证实了雌雄杂种F1在形成配子时,确实产生了四种数目相等的配子,从而验证了自由组合规律的正确性。5.自由组合规律的实质根据前面所讲的可以知道,具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。三、孟德尔遗传规律在理论和实践上的意义孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。  1.理论应用从理论上讲,自由组合规律为解释自然界生物的多样性提供了重要的理论依据。大家知道,导致生物发生变异的原因固然很多,但是,基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对等位基因(这20对等位基因分别位于20对同源染色体上)的生物进行杂交,F2可能出现的表现型就有220=1048576种。这可以说明现在世界生物种类为何如此繁多。当然,生物种类多样性的原因还包括基因突变和染色体变异,这在后面还要讲到。分离规律还可帮助我们更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。2.实践应用孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,现在需要培育出一个既能稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。

希望对你有帮助,谢谢。

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

猜你喜欢

本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有

邮箱:daokedao3713@qq.com

备案号:鲁ICP备2022001955号-4

网站地图