是近年来受到极大关注的一种计算机视觉算法。该算法基于人类双眼视觉的原理,通过捕捉目标的不同角度信息,获取更加深入的三维信息。随着计算机硬件的不断提高和计算机视觉算法的不断发展,双目视觉算法被广泛应用于自动驾驶、机器人导航、虚拟现实等领域。
双目视觉算法
从实现原理上来讲,双目视觉算法是通过两个摄像头同时拍摄同一场景,构建左右视觉图像,再通过计算两张图片中物体的位移量,即可获取目标的三维信息。该算法具有高精度、低延迟的优点,能够实现对物体位置、大小、形状的精确测量,具有很高的应用价值。
从技术路线来看,双目视觉算法通常需要结合计算机视觉的其他技术来进行图像处理、特征提取、三维重建等。其中,深度学习技术被广泛应用于图像处理和特征提取,可以有效地提高双目视觉算法的识别率和实时性。
从应用角度来看,双目视觉算法具有广阔的应用前景。在自动驾驶领域,双目视觉算法可以通过识别道路交通标志、检测车道线等实现自动驾驶,提高车辆的安全性和行驶效率;在机器人导航领域,双目视觉算法可以用于远程操控、地形探测和目标捕捉等,提高机器人的智能化和自主性;在虚拟现实领域,双目视觉算法可以实现真实场景的三维重构和交互式体验,大大提高用户的沉浸感和真实感。
总体而言,双目视觉算法是一种十分有前景的计算机视觉算法,未来将在多个领域得到广泛应用。随着技术的不断进步和应用场景的不断拓展,双目视觉算法将会在实时性、精度、应用范围等方面不断提升。
不懂自己或他人的心?想要进一步探索自我,建立更加成熟的关系,不妨做下文末的心理测试。平台现有近400个心理测试,定期上新,等你来测。如果内心苦闷,想要找人倾诉,可以选择平台的【心事倾诉】产品,通过写信自由表达心中的情绪,会有专业心理咨询师给予你支持和陪伴。
荣耀畅玩7X采用5.93英寸高清全面屏幕,18:9比例显示,屏占比达到82.9%,看电视玩游戏大屏更爽。荣耀畅玩7X,机身精美、后置双镜头,参数信息如下:
1、系统: 荣耀畅玩7X的操作系统是华为 EMUI 5.1(基于Android 7.0),搭配麒麟659,八核处理器,不管是玩游戏还是看视频,都十分的流畅。
2、相机:后置1600万像素+200万像素,F/2.2光圈,支持自动对焦,前置800万像素,F/2.0光圈,支持固定焦距。支持全屏拍照、知性美肤和趣味拍照功能。
3、电池:电池容量3340mAh锂聚合物电池,配置的是5V/2A充电器,不支持快充,续航持久。
4、其他:支持OTG,支持建议模式,学生模式,高铁模式,人像模式,双麦克降噪,一键分屏等等。
可以到华为体验店体验,也可以登录华为商城查询更多参数信息。
姓名:陈心语? 学号:21009102266 书院:海棠1号书院
转自:人工智能在自动驾驶技术中的应用 - 云+社区 - 腾讯云 (tencent.com)
【嵌牛导读】本文介绍了人工智能在无人驾驶方面的应用。
【嵌牛鼻子】人工智能运用于无人驾驶。
【嵌牛提问】人工智能在无人驾驶方面中有什么运用呢?
【嵌牛正文】
随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。
自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。
本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。
人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。
1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。
五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。
人工智能在自动驾驶技术中的应用概述
人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机视觉和自然语言理解等各方面的突破,使得许多曾是天方夜谭的应用成为可能,无人驾驶汽车就是其中之一。作为人工智能等技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。目前,人工智能在汽车自动驾驶技术中也有了广泛应用。
自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,它是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统, 它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术, 是典型的高新技术综合体。
这种汽车能和人一样会“思考” 、“判断”、“行走” ,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆 。 按照SAE(美国汽车工程师协会)的分级,共分为:驾驶员辅助、部分自动驾驶、有条件自动驾驶、高度自动驾驶、完全自动驾驶五个层级。
第一阶段:驾驶员辅助 目的是为驾驶者提供协助,包括提供重要或有益的驾驶相关信息,以及在形势开始变得危急的时候发出明确而简洁的警告。现阶段大部分ADAS主动安全辅助系统,让车辆能够实现感知和干预操作。例如防抱死制动系统(ABS)、电子稳定性控制(ESC)、车道偏离警告系统、正面碰撞警告系统、盲点信息系统等等,此时车辆是能够通过摄像头、雷达传感器获知周围交通状况,进而做出警示和干预。
第二阶段:部分自动驾驶 车辆通过摄像头、雷达传感器、激光传感器等等设备获取道路以及周边交通信息,车辆会自行对方向盘和加减速中的多项操作提供驾驶支援,在驾驶者收到警告却未能及时采取相应行动时能够自动进行干预,其他操作交由驾驶员,实现人机共驾,但车辆不允许驾驶员的双手脱离方向盘。例如自适应巡航控制(ACC)、车道保持辅助系统(LKA)、自动紧急制动(AEB)系统、车道偏离预警(LDW)等。
第三阶段:有条件自动驾驶 由自动驾驶系统完成驾驶操作,根据路况条件所限,必要时发出系统请求,必须交由驾驶员驾驶。
第四阶段:高度自动驾驶 由自动驾驶系统完成所有驾驶操作,根据系统请求,驾驶员可以不接管车辆。车辆已经可以完成自动驾驶,一旦出现自动驾驶系统无法招架的情形,车辆也可以自行调整完成自动驾驶,驾驶员不需要干涉。
第五阶段:完全自动驾驶 自动驾驶的理想形态,乘客只需提供目的地,无论任何路况,任何天气,车辆均能够实现自动驾驶。这种自动化水平允许乘客从事计算机工作、休息和睡眠以及其他娱乐等活动,在任何时候都不需要对车辆进行监控。
自动驾驶的实现
车辆实现自动驾驶,必须经由三大环节:
第一,感知。 也就是让车辆获取,不同的系统需要由不同类型的车用感测器,包含毫米波雷达、超声波雷达、红外雷达、雷射雷达、CCD CMOS影像感测器及轮速感测器等来收集整车的工作状态及其参数变化情形。
第二,处理。 也就是大脑将感测器所收集到的资讯进行分析处理,然后再向控制的装置输出控制讯号。
第三,执行。 依据ECU输出的讯号,让汽车完成动作执行。其中每一个环节都离不开人工智能技术的基础。
人工智能在自动驾驶定位技术中的应用
定位技术是自动驾驶车辆行驶的基础。目前常用的技术包括 线导航、磁导航、无线导航、视觉导航、导航、激光导航等。
其中磁导航是目前最成熟可靠的方案,现有大多数应用均采用这种导航技术。磁导航技术通过在车道上埋设磁性标志来给车辆提供车道的边界信息,磁性材料具有好的环境适应性,它对雨天,冰雪覆盖,光照不足甚至无光照的情况都可适应,不足之处是需要对现行的道路设施作出较大的改动,成本较高。同时磁性导航技术无法预知车道前方的障碍,因而不可能单独使用。
视觉导航对基础设施的要求较低,被认为是最有前景的导航方法。在高速路和城市环境中视觉方法受到了较大的关注。
人工智能在自动驾驶图像识别与感知中的应用
无人驾驶汽车感知依靠传感器。目前传感器性能越来越高、体积越来越小、功耗越来越低,其飞速发展是无人驾驶热潮的重要推手。反过来,无人驾驶又对车载传感器提出了更高的要求,又促进了其发展。
用于无人驾驶的传感器可以分为四类:
雷达传感器
主要用来探测一定范围内障碍物(比如车辆、行人、路肩等)的方位、距离及移动速度,常用车载雷达种类有激光雷达、毫米波雷达和超声波雷达。激光雷达精度高、探测范围广,但成本高,比如Google无人车顶上的64线激光雷达成本高达70多万元人民币;毫米波雷达成本相对较低,探测距离较远,被车企广泛使用,但与激光雷达比精度稍低、可视角度偏小;超声波雷达成本最低,但探测距离近、精度低,可用于低速下碰撞预警。
视觉传感器
主要用来识别车道线、停止线、交通信号灯、交通标志牌、行人、车辆等。常用的有单目摄像头、双目摄像头、红外摄像头。视觉传感器成本低,相关研究与产品非常多,但视觉算法易受光照、阴影、污损、遮挡影响,准确性、鲁棒性有待提高。所以,作为人工智能技术广泛应用的领域之一的图像识别,也是无人驾驶汽车领域的一个研究热点。
定位及位姿传感器
主要用来实时高精度定位以及位姿感知,比如获取经纬度坐标、速度、加速度、航向角等,一般包括全球卫星定位系统(GNSS)、惯性设备、轮速计、里程计等。现在国内常用的高精度定位方法是使用差分定位设备,如RTK-GPS,但需要额外架设固定差分基站,应用距离受限,而且易受建筑物、树木遮挡影响。近年来很多省市的测绘部门都架设了相当于固定差分基站的连续运行参考站系统(CORS),比如辽宁、湖北、上海等,实现了定位信号的大范围覆盖,这种基础设施建设为智能驾驶提供了有力的技术支撑。定位技术是无人驾驶的核心技术,因为有了位置信息就可以利用丰富的地理、地图等先验知识,可以使用基于位置的服务。
车身传感器
来自车辆本身,通过整车网络接口获取诸如车速、轮速、档位等车辆本身的信息。
人工智能在自动驾驶深度学习中的应用
驾驶员认知靠大脑,无人驾驶汽车的“大脑”则是计算机。无人车里的计算机与我们常用的台式机、笔记本略有不同,因为车辆在行驶的时候会遇到颠簸、震动、粉尘甚至高温的情况,一般计算机无法长时间运行在这些环境中。所以无人车一般选用工业环境下的计算机——工控机。
工控机上运行着操作系统,操作系统中运行着无人驾驶软件。如图1所示为某无人驾驶车软件系统架构。操作系统之上是支撑模块(这里模块指的是计算机程序),对上层软件模块提供基础服务。
支撑模块包括:虚拟交换模块,用于模块间通信;日志管理模块,用于日志记录、检索以及回放;进程监控模块,负责监视整个系统的运行状态,如果某个模块运行不正常则提示操作人员并自动采取相应措施;交互调试模块,负责开发人员与无人驾驶系统交互。
图:某无人驾驶车软件系统架构
除了对外界进行认知之外,机器还必须要能够进行学习。深度学习是无人驾驶技术成功地基础,深度学习是源于人工神经网络的一种高效的机器学习方法。深度学习可以提高汽车识别道路、行人、障碍物等的时间效率,并保障了识别的正确率。通过大量数据的训练之后,汽车可以将收集到的图形,电磁波等信息转换为可用的数据,利用深度学习算法实现无人驾驶。
在无人驾驶汽车通过雷达等收集到数据时,对于原始的训练数据要首先进行数据的预处理化。计算均值并对数据的均值做均值标准化、对原始数据做主成分分析、使用PCA白化或ZCA白化。例如:将激光传感器收集到的时间数据转换为车与物体之间的距离;将车载摄像头拍摄到的照片信息转换为对路障的判断,对红绿灯的判断,对行人的判断等;雷达探测到的数据转换为各个物体之间的距离。
将深度学习应用于无人驾驶汽车中, 主要包含以下步骤:
1. 准备数据,对数据进行预处理再选用合适的数据结构存储训练数据和测试元组;
2. 输入大量数据对第一层进行无监督学习;
3. 通过第一层对数据进行聚类,将相近的数据划分为同一类,随机进行判断;
4. 运用监督学习调整第二层中各个节点的阀值,提高第二层数据输入的正确性;
5. 用大量的数据对每一层网络进行无监督学习,并且每次用无监督学习只训练一层,将其训练结果作为其更高一层的输入。
6. 输入之后用监督学习去调整所有层。
人工智能在自动驾驶信息共享中的应用
首先, 利用无线网络进行车与车之间的信息共享。通过专用通道,一辆汽车可以把自己的位置、路况实时分享给队里的其它汽车,以便其它车辆的自动驾驶系统,在收到信息后做出相应调整。
其次, 是3D路况感应,车辆将结合超声波传感器、摄像机、雷达和激光测距等技术,检测出汽车前方约5米内地形地貌,判断前方是柏油路还是碎石、草地、沙滩等路面,根据地形自动改变汽车设置。
另外, 汽车还将能进行自动变速,一旦探测到地形发生改变,可以自动减速,路面恢复正常后,再回到原先状态。
汽车信息共享所收集到的交通信息量将非常巨大,如果不对这些数据进行有效处理和利用,就会迅速被信息所湮没。因此需要采用数据挖掘、人工智能等方式提取有效信息,同时过滤掉无用信息。考虑到车辆行驶过程中需要依赖的信息具有很大的时间和空间关联性,因此有些信息的处理需要非常及时。
人工智能应用于自动驾驶技术中的优势
人工智能算法更侧重于学习功能,其他算法更侧重于计算功能。 学习是智能的重要体现,学习功能是人工智能的重要特征,现阶段大多人工智能技术还处在学的阶段。如前文所说,无人驾驶实际上是类人驾驶,是智能车向人类驾驶员学习如何感知交通环境,如何利用已有的知识和驾驶经验进行决策和规划,如何熟练地控制方向盘、油门和刹车。
从感知、认知、行为三个方面看, 感知部分难度最大, 人工智能技术应用最多。感知技术依赖于传感器,比如摄像头,由于其成本低,在产业界倍受青睐。以色列一家名叫Mobileye的公司在交通图像识别领域做得非常好,它通过一个摄像头可以完成交通标线识别、交通信号灯识别、行人检测,甚至可以区别前方是自行车、汽车还是卡车。
人工智能技术在图像识别领域的成功应用莫过于深度学习,近几年研究人员通过卷积神经网络和其它深度学习模型对图像样本进行训练,大大提高了识别准确率。Mobileye目前取得的成果,正是得益于该公司很早就将深度学习当作一项核心技术进行研究。 认知与控制方面,主要使用人工智能领域中的传统机器学习技术,通过学习人类驾驶员的驾驶行为建立驾驶员模型,学习人的方式驾驶汽车。
无人驾驶技术所面临的挑战和展望
在目前交通出行状况越来越恶劣的背景下,“无人驾驶”汽车的商业化前景,还受很多因素制约。
主要有:
1. 法规障碍
2. 不同品牌车型间建立共同协议,行业缺少规范和标准
3. 基础道路状况,标识和信息准确性,信息网络的安全性
4. 难以承受的高昂成本
此外,“无人驾驶”汽车的一个最大特点,就是 车辆网络化、信息化程度极高 ,而这也对电脑系统的安全问题形成极大挑战。一旦遇到电脑程序错乱或者信息网络被入侵的情况,如何继续保证自身车辆以及周围其他车辆的行驶安全,这同样是未来急需解决的问题。 虽然无人驾驶技术还存在着很多挑战,但是无人驾驶难在感知,重在“学习”,无人驾驶的技术水平迟早会超过人类,因为稳、准、快是机器的先天优势,人类无法与之比拟。
前言
1 简介
2 图像采集
2.1 照明
2.1.1 电磁辐射
2.1.2 光源类型
2.1.3 光与被测物间的相互作用
2.1.4 利用照明的光谱
2.1.5 利用照明的方向性
2.2 镜头
2.2.1 针孔摄像机
2.2.2 高斯光学
2.2.3 景深
2.2.4 远心镜头
2.2.5 镜头的像差
2.3 摄像机
2.3.1 CCD传感器
2.3.2 CMOS传感器
2.3.3 彩色摄像机
2.3.4 传感器尺寸
2.3.5 摄像机性能
2.4 摄像机-计算机接口
2.4.1 模拟视频信号
2.4.2 数字视频信号:Camera Link
2.4.3 数字视频信号:IEEE 1394
2.4.4 数字视频信号:USB 2.0
2.4.5 数字视频信号:Gigabit Etherne千兆网
2.4.6 图像采集模式
3 机器视觉算法
3.1 数据结构
3.1.1 图像
3.1.2 区域
3.1.3 亚像素精度轮廓
3.2 图像增强
3.2.1 灰度值变换
3.2.2 辐射标定
3.2.3 图像平滑
3.2.4 傅立叶变换
3.3 几何变换
3.3.1 仿射变换
3.3.2 投影变换
3.3.3 图像变换
3.3.4 极坐标变换
3.4 图像分割
3.4.1 阈值分割
3.4.2 提取连通区域
3.4.3 亚像素精度阈值分割
3.5 特征提取
3.5.1 区域特征
3.5.2 灰度值特征
3.5.3 轮廓特征
3.6 形态学
3.6.1 区域形态学
3.6.2 灰度值形态学
3.7 边缘提取
3.7.1 在一维和二维中的边缘定义
3.7.2 一维边缘提取
3.7.3 二维边缘提取
3.7.4 边缘的准确度
3.8 几何基元的分割和拟合
3.8.1 直线拟合
3.8.2 圆拟合
3.8.3 椭圆拟合
3.8.4 将轮廓分割为直线、圆和椭圆
3.9 摄像机标定
3.9.1 面阵摄像机的摄像机模型
3.9.2 线阵摄像机的摄像机模型
3.9.3 标定过程
3.9.4 从单幅图像中提取世界坐标
3.9.5 摄像机参数的准确度
3.10 立体重构
3.10.1 立体几何结构
3.10.2 立体匹配
3.11 模板匹配
3.11.1 基于灰度值的模板匹配
3.11.2 使用图形金字塔进行匹配
3.11.3 基于灰度值的亚像素精度匹配
3.11.4 带旋转与缩放的模板匹配
3.11.5 可靠的模板匹配算法
3.12 光学字符识别(OCR)
3.12.1 字符分割
3.12.2 特征提取
3.12.3 字符分类
4 机器视觉应用
4.1 半导体晶片切割
4.2 序列号读取
4.3 锯片检测
4.4 印刷检测
4.5 封装检查
4.6 表面检测
4.7 火化塞测量
4.8 模制品披峰检测
4.9 冲孔板检查
4.10 使用双目立体视觉系统进行三维平面重构
4.11 电阻姿态检验
4.12 非织布料分类
参考文献
索引
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:daokedao3713@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
本站内容仅供参考,不作为诊断及医疗依据,如有医疗需求,请务必前往正规医院就诊
祝由网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。
Copyright © 2022-2023 祝由师网 版权所有
邮箱:daokedao3713@qq.com